I Castro, A Riveros, J L Palma, L Abelmann, R Tomasello, D R Rodrigues, A Giordano, G Finocchio, R A Gallardo, N Vidal-Silva
{"title":"Modeling the spatial resolution of magnetic solitons in magnetic force microscopy and the effect on their sizes.","authors":"I Castro, A Riveros, J L Palma, L Abelmann, R Tomasello, D R Rodrigues, A Giordano, G Finocchio, R A Gallardo, N Vidal-Silva","doi":"10.1038/s41598-025-95584-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we explored theoretically the spatial resolution of magnetic solitons and the variations of their sizes when subjected to a magnetic force microscopy (MFM) measurement. Next to tip-sample separation, we considered reversal in the magnetization direction of the tip, showing that the magnetic soliton size measurement can be strongly affected by the magnetization direction of the tip. In addition to previous studies that only consider thermal fluctuations, we developed a theoretical method to obtain the minimum observable length of a magnetic soliton and its length variation due to the influence of the MFM tip by minimizing the soliton's magnetic energy. We show that a simple spherical model for the MFM tip can capture most of the physics underlying tip-sample interactions, with the key requirement being an estimate of the magnetization field within the sample. Our model uses analytical and numerical calculations and prevents overestimating the characteristic length scales from MFM images. We compared our method with available data from MFM measurements of domain wall widths, and we performed micromagnetic simulations of a skyrmion-tip system, finding a good agreement for both attractive and repulsive domain wall profile signals and for the skyrmion diameter in the presence of the magnetic tip. In addition, the theoretically calculated frequency shift presents good qualitative agreement with experimental measurements. Our results provide significant insights for a better interpretation of MFM measurements of different magnetic solitons and will be helpful in the design of potential reading devices based on magnetic solitons as information carriers.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11944"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95584-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we explored theoretically the spatial resolution of magnetic solitons and the variations of their sizes when subjected to a magnetic force microscopy (MFM) measurement. Next to tip-sample separation, we considered reversal in the magnetization direction of the tip, showing that the magnetic soliton size measurement can be strongly affected by the magnetization direction of the tip. In addition to previous studies that only consider thermal fluctuations, we developed a theoretical method to obtain the minimum observable length of a magnetic soliton and its length variation due to the influence of the MFM tip by minimizing the soliton's magnetic energy. We show that a simple spherical model for the MFM tip can capture most of the physics underlying tip-sample interactions, with the key requirement being an estimate of the magnetization field within the sample. Our model uses analytical and numerical calculations and prevents overestimating the characteristic length scales from MFM images. We compared our method with available data from MFM measurements of domain wall widths, and we performed micromagnetic simulations of a skyrmion-tip system, finding a good agreement for both attractive and repulsive domain wall profile signals and for the skyrmion diameter in the presence of the magnetic tip. In addition, the theoretically calculated frequency shift presents good qualitative agreement with experimental measurements. Our results provide significant insights for a better interpretation of MFM measurements of different magnetic solitons and will be helpful in the design of potential reading devices based on magnetic solitons as information carriers.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.