A pesticide residue detection model for food based on NIR and SERS.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-04-08 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0320456
Fuchao Yan, Rui Zhang, Shuqi Wang, Ning Zhang, Xueyao Zhang
{"title":"A pesticide residue detection model for food based on NIR and SERS.","authors":"Fuchao Yan, Rui Zhang, Shuqi Wang, Ning Zhang, Xueyao Zhang","doi":"10.1371/journal.pone.0320456","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a multivariate calibration model based on Near Infrared Spectroscopy (NIR) and Surface Enhanced Raman Spectroscopy (SERS) techniques, aiming to achieve efficient and accurate detection of pesticide residues in food by integrating the spectral information from both techniques. The study utilizes the Hilbert-Schmidt Independence Criterion-based Variable Space Iterative Optimization algorithm (HSIC-VSIO) for feature variable selection, and combines it with Partial Least Squares Regression (PLSR) to build a spectral fusion quantitative model. Experimental results show that the calibration set Root Mean Square Error (RMSE1) of the NIR and SERS feature-layer fusion model is 0.160, the prediction set RMSE (RMSE2) is 0.185, the prediction set coefficient of determination (R²) is 0.988, and the Relative Percent Deviation (RPD) is 8.290. Compared to single spectral techniques, the NIR and SERS spectral feature-layer fusion method demonstrates significant superiority in detecting pesticide residues in complex matrix samples. The findings further validate the high sensitivity of SERS technology in detecting low concentrations of pesticides and show that the feature-layer fusion method effectively suppresses matrix interference, enhancing the model's generalization ability. This study provides a reliable tool for the rapid and accurate detection of pesticide residues in food and offers new insights into the application of spectral analysis technologies in the food safety field.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0320456"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320456","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a multivariate calibration model based on Near Infrared Spectroscopy (NIR) and Surface Enhanced Raman Spectroscopy (SERS) techniques, aiming to achieve efficient and accurate detection of pesticide residues in food by integrating the spectral information from both techniques. The study utilizes the Hilbert-Schmidt Independence Criterion-based Variable Space Iterative Optimization algorithm (HSIC-VSIO) for feature variable selection, and combines it with Partial Least Squares Regression (PLSR) to build a spectral fusion quantitative model. Experimental results show that the calibration set Root Mean Square Error (RMSE1) of the NIR and SERS feature-layer fusion model is 0.160, the prediction set RMSE (RMSE2) is 0.185, the prediction set coefficient of determination (R²) is 0.988, and the Relative Percent Deviation (RPD) is 8.290. Compared to single spectral techniques, the NIR and SERS spectral feature-layer fusion method demonstrates significant superiority in detecting pesticide residues in complex matrix samples. The findings further validate the high sensitivity of SERS technology in detecting low concentrations of pesticides and show that the feature-layer fusion method effectively suppresses matrix interference, enhancing the model's generalization ability. This study provides a reliable tool for the rapid and accurate detection of pesticide residues in food and offers new insights into the application of spectral analysis technologies in the food safety field.

基于近红外和 SERS 的食品农药残留检测模型。
本文提出了一种基于近红外光谱(NIR)和表面增强拉曼光谱(SERS)技术的多变量校准模型,旨在整合两种技术的光谱信息,实现食品中农药残留的高效、准确检测。本研究利用基于Hilbert-Schmidt独立准则的变量空间迭代优化算法(HSIC-VSIO)进行特征变量选择,并将其与偏最小二乘回归(PLSR)相结合,构建光谱融合定量模型。实验结果表明,NIR和SERS特征层融合模型的校准集均方根误差(RMSE1)为0.160,预测集RMSE (RMSE2)为0.185,预测集决定系数(R²)为0.988,相对百分比偏差(RPD)为8.290。与单光谱技术相比,近红外和SERS光谱特征层融合方法在检测复杂基质样品中的农药残留方面具有显著的优势。研究结果进一步验证了SERS技术检测低浓度农药的高灵敏度,表明特征层融合方法有效抑制了矩阵干扰,增强了模型的泛化能力。本研究为快速准确检测食品中农药残留提供了可靠的工具,为光谱分析技术在食品安全领域的应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信