{"title":"Ischemic preconditioning: exploring local ergogenic mechanisms in non-fatiguing voluntary contractions.","authors":"Ruben Allois, Raffaele Pertusio, Pasquale Pagliaro, Silvestro Roatta","doi":"10.3389/fphys.2025.1542394","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>IPC has been suggested to boost skeletal muscle performance, though its effectiveness remains controversial. This study evaluates whether IPC influences local hemodynamic responses and surface electromyographic (sEMG) activity during non-fatiguing voluntary sustained and intermittent contractions.</p><p><strong>Methods: </strong>Ten male participants were subjected to IPC (3 cycles, 5-min ON/5-min OFF right arm ischemia, cuff pressure: 250 mmHg) and SHAM (same protocol at 20 mmHg) in two different sessions. Near-infrared spectroscopy was used to monitor tissue oxygenation (TOI) and deoxy-hemoglobin (HHb) in extensor and flexor forearm muscles. sEMG was also recorded. Measurements were taken during sustained (20-s duration) and intermittent (5 s ON/5 s OFF) isometric contractions at 20, 30, and 40% of the maximal voluntary contraction. These non-fatiguing exercise tasks were performed before and 30 min after the IPC/SHAM intervention.</p><p><strong>Results: </strong>sEMG exhibited a significant increase post vs. pre-treatment in both IPC and SHAM in extensors. A significant decrease in TOI at rest was noted pre vs. post-treatment for both IPC and SHAM (p < 0.01). In general, no main effect of treatment was observed, except for HHb changes during contraction in extensor muscles, associated with no effect of time and no time-treatment interaction. All variables exhibited a main effect of force level (p < 0.05), with no interaction with treatment or time.</p><p><strong>Conclusion: </strong>IPC had no effect on hemodynamic and electromyographic variables during sustained and intermittent handgrip. These results do not support IPC-related ergogenic effects at the muscle level, aligning with previous findings on electrically stimulated contractions.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1542394"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1542394","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: IPC has been suggested to boost skeletal muscle performance, though its effectiveness remains controversial. This study evaluates whether IPC influences local hemodynamic responses and surface electromyographic (sEMG) activity during non-fatiguing voluntary sustained and intermittent contractions.
Methods: Ten male participants were subjected to IPC (3 cycles, 5-min ON/5-min OFF right arm ischemia, cuff pressure: 250 mmHg) and SHAM (same protocol at 20 mmHg) in two different sessions. Near-infrared spectroscopy was used to monitor tissue oxygenation (TOI) and deoxy-hemoglobin (HHb) in extensor and flexor forearm muscles. sEMG was also recorded. Measurements were taken during sustained (20-s duration) and intermittent (5 s ON/5 s OFF) isometric contractions at 20, 30, and 40% of the maximal voluntary contraction. These non-fatiguing exercise tasks were performed before and 30 min after the IPC/SHAM intervention.
Results: sEMG exhibited a significant increase post vs. pre-treatment in both IPC and SHAM in extensors. A significant decrease in TOI at rest was noted pre vs. post-treatment for both IPC and SHAM (p < 0.01). In general, no main effect of treatment was observed, except for HHb changes during contraction in extensor muscles, associated with no effect of time and no time-treatment interaction. All variables exhibited a main effect of force level (p < 0.05), with no interaction with treatment or time.
Conclusion: IPC had no effect on hemodynamic and electromyographic variables during sustained and intermittent handgrip. These results do not support IPC-related ergogenic effects at the muscle level, aligning with previous findings on electrically stimulated contractions.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.