Silica nanoparticles assisted Ba2SiO4:Eu2+-a bluish-green emitting remote phosphor for white light application.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Abinaya Mayavan, Aarthi Kannan, Sakthivel Gandhi
{"title":"Silica nanoparticles assisted Ba<sub>2</sub>SiO<sub>4</sub>:Eu<sup>2+</sup>-a bluish-green emitting remote phosphor for white light application.","authors":"Abinaya Mayavan, Aarthi Kannan, Sakthivel Gandhi","doi":"10.1007/s12200-025-00150-w","DOIUrl":null,"url":null,"abstract":"<p><p>Silica nanoparticles were used to develop a bluish-green emitting Ba<sub>2</sub>SiO<sub>4</sub>:Eu<sup>2+</sup> phosphor, demonstrating their potential for white light applications. The phosphor showed a 48% enhancement of emission intensity compared to conventional silica-assisted phosphors. The use of silica nanoparticles as a precursor could lead to the creation of a more homogeneous distribution of cations and dopant ions. This uniform distribution could facilitate the proper infusion of dopants into the crystal host, resulting in improved emission. The phosphor exhibited high thermal stability, with 56% of its luminescence intensity maintained even at 190 °C compared to room temperature. To reduce thermal stress, a flexible remote phosphor has been developed successfully using optimized silica nanoparticles assisted Ba<sub>2</sub>SiO<sub>4</sub>:Eu<sup>2+</sup> phosphor.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"8"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00150-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Silica nanoparticles were used to develop a bluish-green emitting Ba2SiO4:Eu2+ phosphor, demonstrating their potential for white light applications. The phosphor showed a 48% enhancement of emission intensity compared to conventional silica-assisted phosphors. The use of silica nanoparticles as a precursor could lead to the creation of a more homogeneous distribution of cations and dopant ions. This uniform distribution could facilitate the proper infusion of dopants into the crystal host, resulting in improved emission. The phosphor exhibited high thermal stability, with 56% of its luminescence intensity maintained even at 190 °C compared to room temperature. To reduce thermal stress, a flexible remote phosphor has been developed successfully using optimized silica nanoparticles assisted Ba2SiO4:Eu2+ phosphor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信