Dynamic spatio-temporal pruning for efficient spiking neural networks.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-03-25 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1545583
Shuiping Gou, Jiahui Fu, Yu Sha, Zhen Cao, Zhang Guo, Jason K Eshraghian, Ruimin Li, Licheng Jiao
{"title":"Dynamic spatio-temporal pruning for efficient spiking neural networks.","authors":"Shuiping Gou, Jiahui Fu, Yu Sha, Zhen Cao, Zhang Guo, Jason K Eshraghian, Ruimin Li, Licheng Jiao","doi":"10.3389/fnins.2025.1545583","DOIUrl":null,"url":null,"abstract":"<p><p>Spiking neural networks (SNNs), which draw from biological neuron models, have the potential to improve the computational efficiency of artificial neural networks (ANNs) due to their event-driven nature and sparse data flow. SNNs rely on dynamical sparsity, in that neurons are trained to activate sparsely to minimize data communication. This is critical when accounting for hardware given the bandwidth limitations between memory and processor. Given that neurons are sparsely activated, weights are less frequently accessed, and potentially can be pruned to less performance degradation in a SNN compared to an equivalent ANN counterpart. Reducing the number of synaptic connections between neurons also relaxes memory demands for neuromorphic processors. In this paper, we propose a spatio-temporal pruning algorithm that dynamically adapts to reduce the temporal redundancy that often exists in SNNs when processing Dynamic Vision Sensor (DVS) datasets. Spatial pruning is executed based on both global parameter statistics and inter-layer parameter count and is shown to reduce model degradation under extreme sparsity. We provide an ablation study that isolates the various components of spatio-temporal pruning, and find that our approach achieves excellent performance across all datasets, with especially high performance on datasets with time-varying features. We achieved a 0.69% improvement on the DVS128 Gesture dataset, despite the common expectation that pruning typically degrades performance. Notably, this enhancement comes with an impressive 98.18% reduction in parameter space and a 50% reduction in time redundancy.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1545583"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1545583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs), which draw from biological neuron models, have the potential to improve the computational efficiency of artificial neural networks (ANNs) due to their event-driven nature and sparse data flow. SNNs rely on dynamical sparsity, in that neurons are trained to activate sparsely to minimize data communication. This is critical when accounting for hardware given the bandwidth limitations between memory and processor. Given that neurons are sparsely activated, weights are less frequently accessed, and potentially can be pruned to less performance degradation in a SNN compared to an equivalent ANN counterpart. Reducing the number of synaptic connections between neurons also relaxes memory demands for neuromorphic processors. In this paper, we propose a spatio-temporal pruning algorithm that dynamically adapts to reduce the temporal redundancy that often exists in SNNs when processing Dynamic Vision Sensor (DVS) datasets. Spatial pruning is executed based on both global parameter statistics and inter-layer parameter count and is shown to reduce model degradation under extreme sparsity. We provide an ablation study that isolates the various components of spatio-temporal pruning, and find that our approach achieves excellent performance across all datasets, with especially high performance on datasets with time-varying features. We achieved a 0.69% improvement on the DVS128 Gesture dataset, despite the common expectation that pruning typically degrades performance. Notably, this enhancement comes with an impressive 98.18% reduction in parameter space and a 50% reduction in time redundancy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信