Molecular identification and reproductive function of spexin in the big-belly seahorse (Hippocampus abdominalis)

IF 1.7 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Limiao Zhao , Yuru Li , Jiajun Li , Weiqi Jin , Jun Chen , Bin Wang
{"title":"Molecular identification and reproductive function of spexin in the big-belly seahorse (Hippocampus abdominalis)","authors":"Limiao Zhao ,&nbsp;Yuru Li ,&nbsp;Jiajun Li ,&nbsp;Weiqi Jin ,&nbsp;Jun Chen ,&nbsp;Bin Wang","doi":"10.1016/j.ygcen.2025.114721","DOIUrl":null,"url":null,"abstract":"<div><div>Limited data are available regarding reproductive endocrinology of seahorse. Here, we reported the potential function of spexin (SPX1) in the reproduction of seahorse. SPX1, also known as neuropeptide Q (NPQ), is a novel neuropeptide that coevolved with galanin and kisspeptin. In the current study, the entire open reading frame (ORF) sequence of <em>spx1</em> of the big-belly seahorse (<em>Hippocampus abdominalis</em>) was cloned and characterized, which is 360 base pairs in length, encoding a 119-amino acid precursor peptide, with a 26-aa signaling peptide and a 14-aa C-terminal amidated mature peptide. Tissue distribution expression profiles of <em>spx1</em> transcripts were analyzed and revealed that <em>spx1</em> mRNA could be detected in a variety of tissues, with the highest abundance in the mixture tissues of brain and pituitary. The expression profile of <em>spx1</em> mRNA in the mixture of brain and pituitary during the first reproductive cycle of the big-belly seahorse was evaluated, which showed that the expression level of <em>spx1</em> mRNA was highest during the critical period of ovarian and testicular transition from stage II to stage III at 3.5-month old, and high in females with IV-stage, V-stage and VI-stage, as well as in males with the early-stage brood pouch, suggesting that SPX1 may play a crucial role at these stages of gonadal and brood pouch development. Intraperitoneal injection of SPX1 can suppress the mRNA expressions of <em>galr2b</em> and <em>fshβ</em> in female seahorses, however, it promoted the mRNA expressions of <em>spx1</em>, <em>gal</em>, <em>kiss2</em>, <em>gnrh2</em>, <em>kiss2r</em>, <em>galr1a</em>, <em>galr2b, gnrh3</em> and <em>gnihr</em> in males, besides, low doses of SPX1 enhanced <em>lhβ</em> mRNA expression, while high dose of SPX1 suppressed it. Intraperitoneal injection of SPX1 did not alter the mRNA levels of <em>spx1</em>, <em>gal</em>, <em>kiss2</em>, <em>galr1a</em>, <em>galr2a</em>, <em>gnihr</em> or plasma 17β-E2 in females, nor did it change the mRNA levels of <em>galr2a</em>, <em>gthα</em>, <em>fshβ</em> or plasma 11-KT in males. These results revealed that SPX1 may participate in regulating reproduction of the big-belly seahorse by controlling production of GnRH2, GnRH3, FSH and LH of HPG axis, as well as some key hypothalamic neuropeptides including Kiss and GAL. Above all, our results indicate the presence of a functional SPX1 system in the big-belly seahorse, as well as reveal its potential significance in the neuroendocrine regulation of reproduction in this species, which also lay a foundation for future research on optimizing fish reproductive performance through the regulation of SPX1.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"367 ","pages":"Article 114721"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648025000619","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Limited data are available regarding reproductive endocrinology of seahorse. Here, we reported the potential function of spexin (SPX1) in the reproduction of seahorse. SPX1, also known as neuropeptide Q (NPQ), is a novel neuropeptide that coevolved with galanin and kisspeptin. In the current study, the entire open reading frame (ORF) sequence of spx1 of the big-belly seahorse (Hippocampus abdominalis) was cloned and characterized, which is 360 base pairs in length, encoding a 119-amino acid precursor peptide, with a 26-aa signaling peptide and a 14-aa C-terminal amidated mature peptide. Tissue distribution expression profiles of spx1 transcripts were analyzed and revealed that spx1 mRNA could be detected in a variety of tissues, with the highest abundance in the mixture tissues of brain and pituitary. The expression profile of spx1 mRNA in the mixture of brain and pituitary during the first reproductive cycle of the big-belly seahorse was evaluated, which showed that the expression level of spx1 mRNA was highest during the critical period of ovarian and testicular transition from stage II to stage III at 3.5-month old, and high in females with IV-stage, V-stage and VI-stage, as well as in males with the early-stage brood pouch, suggesting that SPX1 may play a crucial role at these stages of gonadal and brood pouch development. Intraperitoneal injection of SPX1 can suppress the mRNA expressions of galr2b and fshβ in female seahorses, however, it promoted the mRNA expressions of spx1, gal, kiss2, gnrh2, kiss2r, galr1a, galr2b, gnrh3 and gnihr in males, besides, low doses of SPX1 enhanced lhβ mRNA expression, while high dose of SPX1 suppressed it. Intraperitoneal injection of SPX1 did not alter the mRNA levels of spx1, gal, kiss2, galr1a, galr2a, gnihr or plasma 17β-E2 in females, nor did it change the mRNA levels of galr2a, gthα, fshβ or plasma 11-KT in males. These results revealed that SPX1 may participate in regulating reproduction of the big-belly seahorse by controlling production of GnRH2, GnRH3, FSH and LH of HPG axis, as well as some key hypothalamic neuropeptides including Kiss and GAL. Above all, our results indicate the presence of a functional SPX1 system in the big-belly seahorse, as well as reveal its potential significance in the neuroendocrine regulation of reproduction in this species, which also lay a foundation for future research on optimizing fish reproductive performance through the regulation of SPX1.
大腹海马蛛丝蛋白的分子鉴定及生殖功能。
关于海马生殖内分泌学的资料有限。在此,我们报道了SPX1基因在海马繁殖中的潜在功能。SPX1,又称神经肽Q (NPQ),是一种与Galanin和Kisspeptin共同进化的新型神经肽。本研究克隆并鉴定了大腹海马(Hippocampus abdominalis) spx1的整个开放阅读框(ORF)序列,全长360个碱基对,编码一个119个氨基酸的前体肽,包含一个26-aa信号肽和一个14-aa c端修饰的成熟肽。分析spx1转录本的组织分布表达谱,发现spx1 mRNA可在多种组织中检测到,在脑和垂体混合组织中丰度最高。spx1 mRNA在大腹海马第一个生殖周期的脑垂体混合物中的表达谱分析表明,spx1 mRNA在3.5月龄时卵巢和睾丸由II期向III期过渡的关键时期表达量最高,在iv期、v期和vi期雌性以及育儿袋早期雄性中表达量较高;这表明SPX1可能在性腺和育儿袋发育的这些阶段起着至关重要的作用。腹腔注射SPX1可抑制雌性海马galr2b和fshβ mRNA的表达,而促进雄性海马SPX1、gal、kiss2、gnrh2、kiss2r、galr1a、galr2b、gnrh3和gnihr mRNA的表达,且低剂量SPX1增强了lhβ mRNA的表达,高剂量SPX1抑制了lhβ mRNA的表达。腹腔注射SPX1未改变雌性小鼠SPX1、gal、kiss2、galr1a、galr2a、gnihr和血浆17β-E2的mRNA水平,也未改变雄性小鼠galr2a、gthα、fshβ和血浆11-KT的mRNA水平。这些结果表明SPX1可能通过控制HPG轴GnRH2、GnRH3、FSH、LH以及KISS、GAL等下丘脑关键神经肽的产生参与大腹海马的生殖调节。综上所述,我们的结果表明SPX1在大腹海马中存在功能性的系统,并揭示了其在大腹海马生殖神经内分泌调节中的潜在意义。这也为今后通过调控SPX1优化鱼类繁殖性能的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General and comparative endocrinology
General and comparative endocrinology 医学-内分泌学与代谢
CiteScore
5.60
自引率
7.40%
发文量
120
审稿时长
2 months
期刊介绍: General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信