Role of Ca2+/calmodulin and PI3K/AKT signaling pathways and active ingredients of BaoTaiYin in treatment of recurrent miscarriage.

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frontiers in Molecular Biosciences Pub Date : 2025-03-25 eCollection Date: 2025-01-01 DOI:10.3389/fmolb.2025.1573294
Li Ji, Anqi Deng, Huiying Chen, Shuangyan Guo, Pingyu Wang, Ruiyi Zhang, Wenyang Chen, Taotao Fan, Lijuan Jiang, Bing Shen
{"title":"Role of Ca<sup>2+</sup>/calmodulin and PI3K/AKT signaling pathways and active ingredients of BaoTaiYin in treatment of recurrent miscarriage.","authors":"Li Ji, Anqi Deng, Huiying Chen, Shuangyan Guo, Pingyu Wang, Ruiyi Zhang, Wenyang Chen, Taotao Fan, Lijuan Jiang, Bing Shen","doi":"10.3389/fmolb.2025.1573294","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>BaoTaiyin (BTY) is a traditional Chinese medicine decoction. It has been used to treat recurrent miscarriage (RM). However, there are no comprehensive systematic studies to identify the chemical compositions of BTY and molecular mechanisms on RM. Finding the chemical components of BTY and clarifying the underlying processes in the treatment of RM were the goals of the study.</p><p><strong>Methods: </strong>We used ultra-high-performance liquid chromatography coupled with triple quadruple time-of-flight tandem mass spectrometry to analyze the chemical components of BTY, network analysis to predict the pharmacological effects of the identified active ingredients, and cell experiments to identify potential molecular mechanisms.</p><p><strong>Results: </strong>We found 12 active ingredients among 61 components identified in BTY. These identified activities were linked to regulatory effects on 127 key signaling pathways, targeting 107 proteins. Through network analysis, we determined that insulin-like growth factor 1 receptor, matrix metalloproteinases, PI3K, and STAT3 may be the core targets of BTY's therapeutic effects on RM. We further explored this mechanism to find that aqueous extracts of BTY significantly enhanced IGFBP2 and CaMKK2 expression and trophoblast proliferation, whereas inhibitors of IGF1R/PI3K/AKT pathway or CaMKK2 blocked the effect of BTY on trophoblast proliferation. In addition, IGFBP2 siRNA suppressed BTY-induced CaMKK2 expression. Caffeic acid, as one of components of BTY, increased intracellular Ca<sup>2+</sup> concentration and proliferation in trophoblast.</p><p><strong>Conclusion: </strong>Our research showed that BTY may have therapeutic benefits on RM through multiple targets and pathways, such as the IGF1R/PI3K/AKT and Ca<sup>2+</sup>/calmodulin signaling pathways.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1573294"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1573294","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: BaoTaiyin (BTY) is a traditional Chinese medicine decoction. It has been used to treat recurrent miscarriage (RM). However, there are no comprehensive systematic studies to identify the chemical compositions of BTY and molecular mechanisms on RM. Finding the chemical components of BTY and clarifying the underlying processes in the treatment of RM were the goals of the study.

Methods: We used ultra-high-performance liquid chromatography coupled with triple quadruple time-of-flight tandem mass spectrometry to analyze the chemical components of BTY, network analysis to predict the pharmacological effects of the identified active ingredients, and cell experiments to identify potential molecular mechanisms.

Results: We found 12 active ingredients among 61 components identified in BTY. These identified activities were linked to regulatory effects on 127 key signaling pathways, targeting 107 proteins. Through network analysis, we determined that insulin-like growth factor 1 receptor, matrix metalloproteinases, PI3K, and STAT3 may be the core targets of BTY's therapeutic effects on RM. We further explored this mechanism to find that aqueous extracts of BTY significantly enhanced IGFBP2 and CaMKK2 expression and trophoblast proliferation, whereas inhibitors of IGF1R/PI3K/AKT pathway or CaMKK2 blocked the effect of BTY on trophoblast proliferation. In addition, IGFBP2 siRNA suppressed BTY-induced CaMKK2 expression. Caffeic acid, as one of components of BTY, increased intracellular Ca2+ concentration and proliferation in trophoblast.

Conclusion: Our research showed that BTY may have therapeutic benefits on RM through multiple targets and pathways, such as the IGF1R/PI3K/AKT and Ca2+/calmodulin signaling pathways.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信