{"title":"De Novo Creation of Two Novel Spliceosomal Introns of RECG1 by Intronization of Formerly Exonic Sequences in Orchidaceae.","authors":"Yuan-Yuan Xie, Bin Wen, Ming-Zhu Bai, Yan-Yan Guo","doi":"10.1007/s00239-025-10242-y","DOIUrl":null,"url":null,"abstract":"<p><p>Spliceosomal introns are a key characteristic of eukaryotic genes. However, the origins and mechanisms of new spliceosomal introns remain elusive, and definitive case studies documenting intron creation are still limited. This study examined the RECG1 genes of 49 land plants, including 21 orchids and 28 non-orchid species. Sequence comparison revealed that the fourth intron of Gastrodia and Platanthera (Orchidaceae) is a newly gained spliceosomal intron, originating from the intronization of former exonic sequences. This intronization event was accompanied by the creation of novel recognizable GT/AG splice sites. In contrast, other orchid species lack the corresponding splice sites in the counterpart regions. Moreover, the secondary and tertiary protein structures implied that the intronization events do not affect the protein function. Given the diverse trophic modes of the two genera, we infer that relaxed selection may have contributed to the fluidity of gene structures. This study provides a typical example of de novo lineage-specific intron creation via intronization in orchids supported by multiple lines of evidence, and the two intronization events occurred independently in the same gene. This research enhances our understanding of gene evolution in orchids and provides valuable insights that may assist the annotation of structurally complex genes.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10242-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spliceosomal introns are a key characteristic of eukaryotic genes. However, the origins and mechanisms of new spliceosomal introns remain elusive, and definitive case studies documenting intron creation are still limited. This study examined the RECG1 genes of 49 land plants, including 21 orchids and 28 non-orchid species. Sequence comparison revealed that the fourth intron of Gastrodia and Platanthera (Orchidaceae) is a newly gained spliceosomal intron, originating from the intronization of former exonic sequences. This intronization event was accompanied by the creation of novel recognizable GT/AG splice sites. In contrast, other orchid species lack the corresponding splice sites in the counterpart regions. Moreover, the secondary and tertiary protein structures implied that the intronization events do not affect the protein function. Given the diverse trophic modes of the two genera, we infer that relaxed selection may have contributed to the fluidity of gene structures. This study provides a typical example of de novo lineage-specific intron creation via intronization in orchids supported by multiple lines of evidence, and the two intronization events occurred independently in the same gene. This research enhances our understanding of gene evolution in orchids and provides valuable insights that may assist the annotation of structurally complex genes.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.