Francesco Tavanti, Giorgia Brancolini, Roberto Perris
{"title":"Computational analysis of the structural-functional dynamics of a Co-receptor proteoglycan.","authors":"Francesco Tavanti, Giorgia Brancolini, Roberto Perris","doi":"10.3389/fmolb.2025.1549177","DOIUrl":null,"url":null,"abstract":"<p><p>Nerve-Glial Antigen 2/Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) is the largest membrane-intercalated cell surface component of the human proteome known to date. NG2/CSPG4 is endowed with the capability of engaging a myriad of molecular interactions and exert co-receptor functions, of which primary ones are sequestering of growth factors and the anchoring of cells to the extracellular matrix. However, the nature of the interactive dynamics of the proteoglycan remains veiled because of its conspicuous size and structural complexity. By leveraging on a multi-scale <i>in silico</i> approach, we have pioneered a comprehensive computational analysis of the structural-functional traits of the NG2/CSPG4 ectodomain. The modelling highlights an intricate assembly of β-sheet motifs linked together by flexible loops. Furthermore, our <i>in silico</i> predictions highlight that the previously delineated D1 domain may consistently remain more accessible for molecular interplays with respect to the D2 and D3 domains. Based on these findings, we have simulated the structural mechanism through the proteoglycan may serve as a co-receptor for growth factor FGF-2, showing that NG2/CSPG4 bends towards the receptor FGFR-1 for this growth factor and confirming the previously hypothesized trimeric complex formation promoted by FGF-2 dimers bridging the FGFR-1-proteoglycan interaction. The Chondroitin Sulphate Proteoglycan 4 is a large multi-domain transmembrane protein involved in several biological processes including pathological conditions. Despite its importance, it has never been studied at the atomistic level due to its large size. Here, we employed a multi-scale computer simulations approach to study its three-dimensional structure, its movements and co-receptor properties, showing that it can serve as mediator in the growth factor signaling process.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1549177"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1549177","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nerve-Glial Antigen 2/Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) is the largest membrane-intercalated cell surface component of the human proteome known to date. NG2/CSPG4 is endowed with the capability of engaging a myriad of molecular interactions and exert co-receptor functions, of which primary ones are sequestering of growth factors and the anchoring of cells to the extracellular matrix. However, the nature of the interactive dynamics of the proteoglycan remains veiled because of its conspicuous size and structural complexity. By leveraging on a multi-scale in silico approach, we have pioneered a comprehensive computational analysis of the structural-functional traits of the NG2/CSPG4 ectodomain. The modelling highlights an intricate assembly of β-sheet motifs linked together by flexible loops. Furthermore, our in silico predictions highlight that the previously delineated D1 domain may consistently remain more accessible for molecular interplays with respect to the D2 and D3 domains. Based on these findings, we have simulated the structural mechanism through the proteoglycan may serve as a co-receptor for growth factor FGF-2, showing that NG2/CSPG4 bends towards the receptor FGFR-1 for this growth factor and confirming the previously hypothesized trimeric complex formation promoted by FGF-2 dimers bridging the FGFR-1-proteoglycan interaction. The Chondroitin Sulphate Proteoglycan 4 is a large multi-domain transmembrane protein involved in several biological processes including pathological conditions. Despite its importance, it has never been studied at the atomistic level due to its large size. Here, we employed a multi-scale computer simulations approach to study its three-dimensional structure, its movements and co-receptor properties, showing that it can serve as mediator in the growth factor signaling process.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.