Berkley Lujan, Mingfeng Zhang, Yujie Cao, Arnav Kacker, Lina Mai, Shunquan Wu, Taylor Alexander, Wendong Huang, Kevin G M Kou
{"title":"Semisynthesis of bersavine and berbamine derivatives that target the CaMKIIγ:cMyc axis for lymphoma therapy.","authors":"Berkley Lujan, Mingfeng Zhang, Yujie Cao, Arnav Kacker, Lina Mai, Shunquan Wu, Taylor Alexander, Wendong Huang, Kevin G M Kou","doi":"10.1039/d5ob00310e","DOIUrl":null,"url":null,"abstract":"<p><p>Berbamine, a bisbenzylisoquinoline alkaloid (bisBIA), is a promising lead for developing novel therapeutics to treat aggressive cancers such as lymphoma, by targeting the CaMKIIγ:cMyc axis. Herein, we report an aza-Friedel-Crafts method for <i>ortho</i>-aminoalkylation of berbamine's phenolic motif, enabling the semisynthesis of the natural product bersavine and analogs that complement current methods focusing on modifying the phenolic oxygen. Several new analogs synthesized by this method exhibit potent cytotoxicity against lymphoma-associated cell line H9 exceeding the naturally occurring berbamine (1) and bersavine (3a). A molecular docking analysis was used to devise a model that rationalizes the structure-activity relationship between the novel bisBIA analogs and CaMKIIγ inhibition.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00310e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Berbamine, a bisbenzylisoquinoline alkaloid (bisBIA), is a promising lead for developing novel therapeutics to treat aggressive cancers such as lymphoma, by targeting the CaMKIIγ:cMyc axis. Herein, we report an aza-Friedel-Crafts method for ortho-aminoalkylation of berbamine's phenolic motif, enabling the semisynthesis of the natural product bersavine and analogs that complement current methods focusing on modifying the phenolic oxygen. Several new analogs synthesized by this method exhibit potent cytotoxicity against lymphoma-associated cell line H9 exceeding the naturally occurring berbamine (1) and bersavine (3a). A molecular docking analysis was used to devise a model that rationalizes the structure-activity relationship between the novel bisBIA analogs and CaMKIIγ inhibition.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.