Harvesting Bright Green Photoluminescence of Tb2(BDC)3(H2O)4 MOF via Pressure-Modulated Ligand-to-Metal Energy Transfer.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yanxue Yin, Yixuan Wang, Ting Zhang, Yunfeng Yang, Weibin Wang, Binhao Yang, Qing Yang, Zhihao Xiao, Xinyi Yang
{"title":"Harvesting Bright Green Photoluminescence of Tb<sub>2</sub>(BDC)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub> MOF via Pressure-Modulated Ligand-to-Metal Energy Transfer.","authors":"Yanxue Yin, Yixuan Wang, Ting Zhang, Yunfeng Yang, Weibin Wang, Binhao Yang, Qing Yang, Zhihao Xiao, Xinyi Yang","doi":"10.1002/asia.202401784","DOIUrl":null,"url":null,"abstract":"<p><p>Lanthanide metal-organic frameworks (Ln-MOFs) exhibit distinctive emission spectra and prolonged luminescent lifetimes, thereby offering a unique platform for the advancement of solid-state photoluminescence (PL) materials. However, the mismatch between the energy levels of metal ions and organic ligands leads to a weak PL emission. Herein, this study presents a pressure-treated strategy aimed at achieving efficient green PL in Tb<sub>2</sub>(BDC)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub> MOF. Compared to the initial intensity, the PL intensity is enhanced eightfold below 3.1 GPa. Intriguingly, the PL intensity of pressure-treated sample is amplified by 2.5-fold compared to the initial state, and the green emission monochromaticity is maintained. Experiments and calculations reveal that the enhanced hydrogen bonds are retained to the ambient conditions after pressure treatment. They lock the conjugated configuration formed between the planes of carboxyl group and benzene ring, facilitating the intersystem crossing. The reduced distances between metal ions and organic ligands drive the ligand-to-metal energy transfer process. This finding provided significant insights into structure-property relationship of Tb<sub>2</sub>(BDC)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>, offering a new platform for boosting emission enhancement in Ln-MOFs.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401784"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401784","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanide metal-organic frameworks (Ln-MOFs) exhibit distinctive emission spectra and prolonged luminescent lifetimes, thereby offering a unique platform for the advancement of solid-state photoluminescence (PL) materials. However, the mismatch between the energy levels of metal ions and organic ligands leads to a weak PL emission. Herein, this study presents a pressure-treated strategy aimed at achieving efficient green PL in Tb2(BDC)3(H2O)4 MOF. Compared to the initial intensity, the PL intensity is enhanced eightfold below 3.1 GPa. Intriguingly, the PL intensity of pressure-treated sample is amplified by 2.5-fold compared to the initial state, and the green emission monochromaticity is maintained. Experiments and calculations reveal that the enhanced hydrogen bonds are retained to the ambient conditions after pressure treatment. They lock the conjugated configuration formed between the planes of carboxyl group and benzene ring, facilitating the intersystem crossing. The reduced distances between metal ions and organic ligands drive the ligand-to-metal energy transfer process. This finding provided significant insights into structure-property relationship of Tb2(BDC)3(H2O)4, offering a new platform for boosting emission enhancement in Ln-MOFs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信