{"title":"Correlation Between CAV-1 and PTEN-Mediated Apoptosis in Hyperoxia-Induced Acute Lung Injury.","authors":"Xin Yi, Bing Li, Xiao Yu, Dawei Cao, Ting Xue, Yujing Zhao, Xinri Zhang","doi":"10.1007/s12010-025-05208-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Respiratory support is essential in the clinical management of critically ill patients; however, prolonged exposure to high concentrations of oxygen can result in hyperoxia-induced acute lung injury (HALI). In this study, we developed a model of hyperoxia exposure utilizing C57BL/6 mice and human bronchial epithelial (BEAS-2B) cells. We employed CAV-1 siRNA transfection and CAV-1 expression plasmid techniques to analyze the effects of hyperoxia on the expression of caveolin-1 (CAV-1), the deletion of the phosphatase and tensin homolog (PTEN) gene on chromosome 10, and the apoptotic markers Bax and Bcl-2. Additionally, we explored the mechanisms by which CAV-1 regulates PTEN-mediated apoptosis in the context of HALI. Our findings aim to provide valuable insights for developing effective preventive and therapeutic strategies to combat this condition.</p><p><strong>Methods: </strong>First, we established a hyperoxia-induced acute lung injury (HALI) model in male C57BL/6 mice. Histopathological examination was conducted using hematoxylin-eosin staining to evaluate the pathological changes and the severity of lung tissue damage. Next, we developed an in vitro HALI model utilizing the BEAS-2B cell line. Subsequently, CAV-1 siRNA and CAV-1 expression plasmids were transfected into BEAS-2B cells. We quantified the expression levels of CAV-1, PTEN, Bax, and Bcl-2 using reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting techniques. Additionally, the impact of altered CAV-1 expression on apoptosis in BEAS-2B cells was assessed through flow cytometry.</p><p><strong>Results: </strong>Exposure to hyperoxia led to pathological alterations in mice's lung tissue, increased the CAV-1, PTEN, and Bax expression levels, and decreased Bcl-2 expression. Initially, there were no notable variances in the expression levels of CAV-1, PTEN, and Bax in the cells. However, as the exposure time to hyperoxia prolonged, there was a significant increase in both mRNA and protein expression levels of CAV-1 and PTEN, while Bcl-2 exhibited a significant decrease. Moreover, CAV-1 knockdown attenuated the expression of PTEN and Bax, and elevated the expression of Bcl-2. However, CAV-1 overexpression showed an opposite result. The expression levels of CAV-1, PTEN, and Bax were positively correlated in mice and cell models, and negatively correlated with those of Bcl-2. Additionally, downregulation of CAV-1 suppressed apoptosis in BEAS-2B cells.</p><p><strong>Conclusion: </strong>Our results indicate that CAV-1 plays a pivotal role in regulating the expression of PTEN and the apoptosis-related factors Bax and Bcl-2 in a hyperoxic environment. This regulatory function of CAV-1 on PTEN and its downstream apoptotic pathways suggests a significant correlation between CAV-1 and PTEN-mediated apoptosis. Consequently, CAV-1 is involved in the development of hyperoxic lung injury (HALI) through the PTEN-mediated apoptotic pathway. These findings offer new insights into the molecular mechanisms underlying the pathogenesis of HALI and underscore the potential therapeutic implications of targeting CAV-1 in the management of this condition.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05208-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Respiratory support is essential in the clinical management of critically ill patients; however, prolonged exposure to high concentrations of oxygen can result in hyperoxia-induced acute lung injury (HALI). In this study, we developed a model of hyperoxia exposure utilizing C57BL/6 mice and human bronchial epithelial (BEAS-2B) cells. We employed CAV-1 siRNA transfection and CAV-1 expression plasmid techniques to analyze the effects of hyperoxia on the expression of caveolin-1 (CAV-1), the deletion of the phosphatase and tensin homolog (PTEN) gene on chromosome 10, and the apoptotic markers Bax and Bcl-2. Additionally, we explored the mechanisms by which CAV-1 regulates PTEN-mediated apoptosis in the context of HALI. Our findings aim to provide valuable insights for developing effective preventive and therapeutic strategies to combat this condition.
Methods: First, we established a hyperoxia-induced acute lung injury (HALI) model in male C57BL/6 mice. Histopathological examination was conducted using hematoxylin-eosin staining to evaluate the pathological changes and the severity of lung tissue damage. Next, we developed an in vitro HALI model utilizing the BEAS-2B cell line. Subsequently, CAV-1 siRNA and CAV-1 expression plasmids were transfected into BEAS-2B cells. We quantified the expression levels of CAV-1, PTEN, Bax, and Bcl-2 using reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting techniques. Additionally, the impact of altered CAV-1 expression on apoptosis in BEAS-2B cells was assessed through flow cytometry.
Results: Exposure to hyperoxia led to pathological alterations in mice's lung tissue, increased the CAV-1, PTEN, and Bax expression levels, and decreased Bcl-2 expression. Initially, there were no notable variances in the expression levels of CAV-1, PTEN, and Bax in the cells. However, as the exposure time to hyperoxia prolonged, there was a significant increase in both mRNA and protein expression levels of CAV-1 and PTEN, while Bcl-2 exhibited a significant decrease. Moreover, CAV-1 knockdown attenuated the expression of PTEN and Bax, and elevated the expression of Bcl-2. However, CAV-1 overexpression showed an opposite result. The expression levels of CAV-1, PTEN, and Bax were positively correlated in mice and cell models, and negatively correlated with those of Bcl-2. Additionally, downregulation of CAV-1 suppressed apoptosis in BEAS-2B cells.
Conclusion: Our results indicate that CAV-1 plays a pivotal role in regulating the expression of PTEN and the apoptosis-related factors Bax and Bcl-2 in a hyperoxic environment. This regulatory function of CAV-1 on PTEN and its downstream apoptotic pathways suggests a significant correlation between CAV-1 and PTEN-mediated apoptosis. Consequently, CAV-1 is involved in the development of hyperoxic lung injury (HALI) through the PTEN-mediated apoptotic pathway. These findings offer new insights into the molecular mechanisms underlying the pathogenesis of HALI and underscore the potential therapeutic implications of targeting CAV-1 in the management of this condition.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.