Integration of network pharmacology and experimental validation to explore the pharmacological mechanism of andrographolide against asthma.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qian Yu, LiHong Zhu, XuChun Ding, YaFang Lou
{"title":"Integration of network pharmacology and experimental validation to explore the pharmacological mechanism of andrographolide against asthma.","authors":"Qian Yu, LiHong Zhu, XuChun Ding, YaFang Lou","doi":"10.1186/s40643-025-00869-6","DOIUrl":null,"url":null,"abstract":"<p><p>Andrographolide (AG), one of the main active components of Andrographis paniculata (Burm.f.) Wall. ex Nees, has been proved to possess the pharmacological function of anti-inflammation in multiple disease including asthma. But the potential mechanism is still not clear. In this study, network pharmacology, molecular docking and experimental validation were utilized to explore the molecular mechanism of AG in the treatment of asthma. AG-related targets and asthma-related targets were screened by Swiss Target Prediction, DrugBank, STITCH, OMIM, Genecards and TTD databases. A protein-protein interaction (PPI) network was obtained through the STRING Database. The plug-in of \"Network Analyzer\" in Cytoscape 3.7.1 software was used to conduct the topological analysis. GO enrichment and KEGG pathway analysis were achieved by Metascape database and Bioinformatics platform. The target-pathway network was acquired by Cytoscape 3.7.1 software. The binding affinity between AG and the target genes was evaluated by Molecular docking with AutoDockTools 1.5.6. Flow cytometry was also used to verify the mechanism behind the treatment of asthma by AG, which was predicted in network pharmacology. In total, 38 targets were identified as potential targets of AG against asthma. The top 10 targets revealed by PPI are: IL-6, IL-1B, NFKB1, MMP9, CDK2, CREBBP, MAP2K1, JAK1, AR, PRKCA. GO and KEGG analysis showed that AG treatment of asthma mainly involved protein phosphorylation, peptidyl-serine phosphorylation, peptidyl-amino acid modification and other biological processes. The main signaling pathways are Th17 cell differentiation, JAK-STAT signaling pathway and PI3K-Akt signaling pathway. Molecular docking showed that AG has higher affinity with MMP9, PRKCA, JAK2, LTGAL and LRRK2. Flow cytometry showed that Th17 cell differentiation may be the potential target of AG in the treatment of asthma. This study successfully revealed the underlying target genes and mechanism involved in the treatment of asthma for AG, providing a reference and guidance for future mechanism research.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"30"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00869-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Andrographolide (AG), one of the main active components of Andrographis paniculata (Burm.f.) Wall. ex Nees, has been proved to possess the pharmacological function of anti-inflammation in multiple disease including asthma. But the potential mechanism is still not clear. In this study, network pharmacology, molecular docking and experimental validation were utilized to explore the molecular mechanism of AG in the treatment of asthma. AG-related targets and asthma-related targets were screened by Swiss Target Prediction, DrugBank, STITCH, OMIM, Genecards and TTD databases. A protein-protein interaction (PPI) network was obtained through the STRING Database. The plug-in of "Network Analyzer" in Cytoscape 3.7.1 software was used to conduct the topological analysis. GO enrichment and KEGG pathway analysis were achieved by Metascape database and Bioinformatics platform. The target-pathway network was acquired by Cytoscape 3.7.1 software. The binding affinity between AG and the target genes was evaluated by Molecular docking with AutoDockTools 1.5.6. Flow cytometry was also used to verify the mechanism behind the treatment of asthma by AG, which was predicted in network pharmacology. In total, 38 targets were identified as potential targets of AG against asthma. The top 10 targets revealed by PPI are: IL-6, IL-1B, NFKB1, MMP9, CDK2, CREBBP, MAP2K1, JAK1, AR, PRKCA. GO and KEGG analysis showed that AG treatment of asthma mainly involved protein phosphorylation, peptidyl-serine phosphorylation, peptidyl-amino acid modification and other biological processes. The main signaling pathways are Th17 cell differentiation, JAK-STAT signaling pathway and PI3K-Akt signaling pathway. Molecular docking showed that AG has higher affinity with MMP9, PRKCA, JAK2, LTGAL and LRRK2. Flow cytometry showed that Th17 cell differentiation may be the potential target of AG in the treatment of asthma. This study successfully revealed the underlying target genes and mechanism involved in the treatment of asthma for AG, providing a reference and guidance for future mechanism research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信