Linh Ho Thuy Nguyen, Ali Mirzaei, Jin-Young Kim, Thang Bach Phan, Lam Dai Tran, Kevin C-W Wu, Hyoun Woo Kim, Sang Sub Kim, Tan Le Hoang Doan
{"title":"Advancements in MOF-based resistive gas sensors: synthesis methods and applications for toxic gas detection.","authors":"Linh Ho Thuy Nguyen, Ali Mirzaei, Jin-Young Kim, Thang Bach Phan, Lam Dai Tran, Kevin C-W Wu, Hyoun Woo Kim, Sang Sub Kim, Tan Le Hoang Doan","doi":"10.1039/d4nh00662c","DOIUrl":null,"url":null,"abstract":"<p><p>Gas sensors are essential tools for safeguarding public health and safety because they allow the detection of hazardous gases. To advance gas-sensing technologies, novel sensing materials with distinct properties are needed. Metal-organic frameworks (MOFs) hold great potential because of their extensive surface areas, high porosity, unique chemical properties, and capabilities for preconcentration and molecular sieving. These attributes make MOFs highly suitable for designing and creating innovative resistive gas sensors. This review article examines resistive gas sensors made from pristine, doped, decorated, and composite MOFs. The first part of the review focuses on the synthesis strategies of MOFs, while the second part discusses MOF-based resistive gas sensors that operate based on changes in resistance.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00662c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gas sensors are essential tools for safeguarding public health and safety because they allow the detection of hazardous gases. To advance gas-sensing technologies, novel sensing materials with distinct properties are needed. Metal-organic frameworks (MOFs) hold great potential because of their extensive surface areas, high porosity, unique chemical properties, and capabilities for preconcentration and molecular sieving. These attributes make MOFs highly suitable for designing and creating innovative resistive gas sensors. This review article examines resistive gas sensors made from pristine, doped, decorated, and composite MOFs. The first part of the review focuses on the synthesis strategies of MOFs, while the second part discusses MOF-based resistive gas sensors that operate based on changes in resistance.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.