CXCR4 Blockade Alleviates Pulmonary and Cardiac Outcomes in Early COPD.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Isabelle Dupin, Pauline Henrot, Elise Maurat, Reshed Abohalaka, Sébastien Chaigne, Dounia El Hamrani, Edmée Eyraud, Renaud Prevel, Pauline Esteves, Marilyne Campagnac, Marielle Dubreuil, Guillaume Cardouat, Clément Bouchet, Olga Ousova, Jean-William Dupuy, Thomas Trian, Matthieu Thumerel, Hugues Begueret, Pierre-Olivier Girodet, Roger Marthan, Maeva Zysman, Véronique Freund-Michel, Patrick Berger
{"title":"CXCR4 Blockade Alleviates Pulmonary and Cardiac Outcomes in Early COPD.","authors":"Isabelle Dupin, Pauline Henrot, Elise Maurat, Reshed Abohalaka, Sébastien Chaigne, Dounia El Hamrani, Edmée Eyraud, Renaud Prevel, Pauline Esteves, Marilyne Campagnac, Marielle Dubreuil, Guillaume Cardouat, Clément Bouchet, Olga Ousova, Jean-William Dupuy, Thomas Trian, Matthieu Thumerel, Hugues Begueret, Pierre-Olivier Girodet, Roger Marthan, Maeva Zysman, Véronique Freund-Michel, Patrick Berger","doi":"10.1165/rcmb.2024-0303OC","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease lacking effective treatment. Focusing on early COPD should help to discover disease modifying therapies. We examined the role of the CXCL12/CXCR4 axis in early COPD using human samples and murine models. Blood samples and lung tissues from both individuals with early COPD and controls were analyzed for CXCL12 and CXCR4 levels. To generate an early-like COPD model, 10-week-old male C57BL/6J mice were exposed to cigarette smoke (CS) for 10 weeks and intranasal instillations of polyinosinic-polycytidylic acid (poly(I:C)) for the last five weeks to mimic exacerbations. The number of cells expressing CXCR4 was increased in the blood of individuals with COPD, as well as in the blood of exposed mice. Lung CXCL12 expression was higher in both early COPD patients and exposed mice. Exposed mice presented mild airflow obstruction, peri-bronchial fibrosis, and right heart thickening. The density of fibrocyte-like cells expressing CXCR4 increased in the bronchial submucosa of these mice. Conditional inactivation of CXCR4 as well as pharmacological inhibition of CXCR4 with plerixafor injections improved lung function, reduced inflammation, and protected against CS and poly-(I:C)-induced airway and cardiac remodeling. CXCR4<sup>-/-</sup> and plerixafor-treated mice also had fewer CXCR4-expressing circulating cells and a lower density of peri-bronchial fibrocyte-like cells. We demonstrate that targeting CXCR4 has beneficial effects in an animal model mimicking early COPD. While these preclinical findings are encouraging, further research is needed to explore the potential for transferring these insights into clinical applications, including drug repurposing.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0303OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease lacking effective treatment. Focusing on early COPD should help to discover disease modifying therapies. We examined the role of the CXCL12/CXCR4 axis in early COPD using human samples and murine models. Blood samples and lung tissues from both individuals with early COPD and controls were analyzed for CXCL12 and CXCR4 levels. To generate an early-like COPD model, 10-week-old male C57BL/6J mice were exposed to cigarette smoke (CS) for 10 weeks and intranasal instillations of polyinosinic-polycytidylic acid (poly(I:C)) for the last five weeks to mimic exacerbations. The number of cells expressing CXCR4 was increased in the blood of individuals with COPD, as well as in the blood of exposed mice. Lung CXCL12 expression was higher in both early COPD patients and exposed mice. Exposed mice presented mild airflow obstruction, peri-bronchial fibrosis, and right heart thickening. The density of fibrocyte-like cells expressing CXCR4 increased in the bronchial submucosa of these mice. Conditional inactivation of CXCR4 as well as pharmacological inhibition of CXCR4 with plerixafor injections improved lung function, reduced inflammation, and protected against CS and poly-(I:C)-induced airway and cardiac remodeling. CXCR4-/- and plerixafor-treated mice also had fewer CXCR4-expressing circulating cells and a lower density of peri-bronchial fibrocyte-like cells. We demonstrate that targeting CXCR4 has beneficial effects in an animal model mimicking early COPD. While these preclinical findings are encouraging, further research is needed to explore the potential for transferring these insights into clinical applications, including drug repurposing.

CXCR4阻断可减轻早期COPD的肺和心脏结局。
慢性阻塞性肺疾病(COPD)是一种常见的呼吸系统疾病,缺乏有效的治疗方法。关注早期COPD应该有助于发现改善疾病的治疗方法。我们使用人类样本和小鼠模型研究了CXCL12/CXCR4轴在早期COPD中的作用。分析了早期COPD患者和对照组的血液样本和肺组织中CXCL12和CXCR4的水平。为了建立早期样COPD模型,将10周龄雄性C57BL/6J小鼠暴露于香烟烟雾(CS)中10周,并在最后5周内鼻内滴注聚肌苷-多胞酸(聚(I:C))以模拟急性加重。COPD患者血液中表达CXCR4的细胞数量增加,暴露于COPD的小鼠血液中也是如此。早期COPD患者和暴露小鼠的肺CXCL12表达均较高。暴露小鼠表现为轻度气流阻塞、支气管周围纤维化和右心增厚。这些小鼠支气管粘膜下层表达CXCR4的纤维细胞样细胞密度增加。条件失活CXCR4以及用普立沙注射液对CXCR4进行药理学抑制可改善肺功能,减少炎症,并防止CS和多(I:C)诱导的气道和心脏重构。CXCR4-/-和plerixa治疗小鼠表达CXCR4的循环细胞减少,支气管周围纤维细胞样细胞密度降低。我们证明靶向CXCR4在模拟早期COPD的动物模型中具有有益作用。虽然这些临床前研究结果令人鼓舞,但需要进一步的研究来探索将这些见解转化为临床应用的潜力,包括药物再利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信