Exploring the role of carbon source types in trace-level sulfamethoxazole removal and greenhouse gas emissions in AnMBRs

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Wanli Yan , Lide Gu , Haoran Li , Jianguo Li , Shikan Zheng , Mingbao Feng , Xin Yu
{"title":"Exploring the role of carbon source types in trace-level sulfamethoxazole removal and greenhouse gas emissions in AnMBRs","authors":"Wanli Yan ,&nbsp;Lide Gu ,&nbsp;Haoran Li ,&nbsp;Jianguo Li ,&nbsp;Shikan Zheng ,&nbsp;Mingbao Feng ,&nbsp;Xin Yu","doi":"10.1016/j.envres.2025.121556","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient removal of trace-level sulfamethoxazole (SMX) from wastewater remains a significant challenge. Different carbon sources can enrich distinct microbiomes, leading to variations in the functional capacity of the community. This makes it possible to select appropriate carbon sources that are conducive to enhancing SMX removal, thereby improving the overall SMX removal efficiency in WWTPs. In this study, acetate, citrate, and glucose were tested as carbon sources in anaerobic membrane bioreactors (AnMBRs) to investigate their effects on trace-level SMX removal. Glucose, as a carbon source, achieved the highest SMX removal efficiency, reduced the risk of resistance gene transmission, and maintained stable nutrient removal performance. The higher abundance of SMX-degrading bacteria and the higher content of extracellular polymeric substances in glucose-fed cultures are the reasons for the higher SMX removal rate. Additionally, GHG emissions, primarily methane, increase with the increase of SMX concentration within the range of 10–250 μg L<sup>−1</sup>. Methane production is predominantly driven by the acetate-to-methane pathway (M00357 KEGG). Higher SMX concentrations led to an increase in the abundance of SMX-resistant bacteria, causing a large amount of CH<sub>4</sub> emissions. These findings provide valuable insights into optimizing carbon source selection and deepen our understanding of the relationship between trace-level SMX removal and GHG emissions in wastewater treatment processes.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"277 ","pages":"Article 121556"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125008072","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient removal of trace-level sulfamethoxazole (SMX) from wastewater remains a significant challenge. Different carbon sources can enrich distinct microbiomes, leading to variations in the functional capacity of the community. This makes it possible to select appropriate carbon sources that are conducive to enhancing SMX removal, thereby improving the overall SMX removal efficiency in WWTPs. In this study, acetate, citrate, and glucose were tested as carbon sources in anaerobic membrane bioreactors (AnMBRs) to investigate their effects on trace-level SMX removal. Glucose, as a carbon source, achieved the highest SMX removal efficiency, reduced the risk of resistance gene transmission, and maintained stable nutrient removal performance. The higher abundance of SMX-degrading bacteria and the higher content of extracellular polymeric substances in glucose-fed cultures are the reasons for the higher SMX removal rate. Additionally, GHG emissions, primarily methane, increase with the increase of SMX concentration within the range of 10–250 μg L−1. Methane production is predominantly driven by the acetate-to-methane pathway (M00357 KEGG). Higher SMX concentrations led to an increase in the abundance of SMX-resistant bacteria, causing a large amount of CH4 emissions. These findings provide valuable insights into optimizing carbon source selection and deepen our understanding of the relationship between trace-level SMX removal and GHG emissions in wastewater treatment processes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信