Liujun Li, Shaodong Wang, Jiaxin Chen, Chaoqun Wu, Ziman Chen, Feile Ye, Xuan Zhou, Xiaoli Zhang, Jianping Li, Jia Zhou, Yao Lu, Zhongzhen Su
{"title":"Radiomics Diagnosis of Microvascular Invasion in Hepatocellular Carcinoma Using 3D Ultrasound and Whole-Slide Image Fusion.","authors":"Liujun Li, Shaodong Wang, Jiaxin Chen, Chaoqun Wu, Ziman Chen, Feile Ye, Xuan Zhou, Xiaoli Zhang, Jianping Li, Jia Zhou, Yao Lu, Zhongzhen Su","doi":"10.1002/smtd.202401617","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a machine learning model that accurately diagnoses microvascular invasion (MVI) in hepatocellular carcinoma by using radiomic features from MVI-positive regions of interest (ROIs). Unlike previous studies, which do not account for the location and distribution of MVI, this research focuses on correlating preoperative imaging with postoperative pathological MVI. This study involves obtaining ex vivo 3D ultrasound images of 36 hepatic specimens from nine rabbits. These images are fused with whole-slide images to localize MVI regions precisely. The identified MVI regions are segmented into MVI-positive ROIs, with a 1:3 ratio of positive to negative ROIs. Radiomic features are extracted from each ROI, and 30 features highly associated with MVI are selected for model development. The performance of several machine learning models is evaluated using metrics such as sensitivity, specificity, accuracy, the area under the curve (AUC), and F1 score. The GBDT model achieves the best results, with an AUC of 0.91, an F1 score of 0.85, a sensitivity of 0.76, a specificity of 0.92, and an accuracy of 0.86. The high diagnostic accuracy of these models highlights the potential for future clinical application in the precise diagnosis of MVI using radiomic features from MVI-positive ROIs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401617"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401617","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a machine learning model that accurately diagnoses microvascular invasion (MVI) in hepatocellular carcinoma by using radiomic features from MVI-positive regions of interest (ROIs). Unlike previous studies, which do not account for the location and distribution of MVI, this research focuses on correlating preoperative imaging with postoperative pathological MVI. This study involves obtaining ex vivo 3D ultrasound images of 36 hepatic specimens from nine rabbits. These images are fused with whole-slide images to localize MVI regions precisely. The identified MVI regions are segmented into MVI-positive ROIs, with a 1:3 ratio of positive to negative ROIs. Radiomic features are extracted from each ROI, and 30 features highly associated with MVI are selected for model development. The performance of several machine learning models is evaluated using metrics such as sensitivity, specificity, accuracy, the area under the curve (AUC), and F1 score. The GBDT model achieves the best results, with an AUC of 0.91, an F1 score of 0.85, a sensitivity of 0.76, a specificity of 0.92, and an accuracy of 0.86. The high diagnostic accuracy of these models highlights the potential for future clinical application in the precise diagnosis of MVI using radiomic features from MVI-positive ROIs.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.