{"title":"Switchable Nanophotosensitizers as Pyroptosis Inducers for Targeted Boosting of Antitumor Photoimmunotherapy.","authors":"Xiaoxi Zhao, Qinjie Zhong, Naibijiang Abudouaini, Yan Zhao, Jibin Zhang, Guozhu Tan, Guifeng Miao, Xiaowu Wang, Jianqiang Liu, Ying Pan, Xiaorui Wang","doi":"10.1021/acs.biomac.5c00140","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its clinical application is constrained by unexpected phototoxicity arising from nonspecific photosensitizer activation and their \"always-on\" nature. Herein, we developed a switchable nanophotosensitizer, poly(cation-π) nanoparticles (NP), which achieves supramolecular assembly through cation-π interactions. By coupling choline cationic moieties with aromatic photosensitizers (ZnPc), the polymer facilitates self-assembly driven by cation-π interactions for NP engineering. Surprisingly, the photoactivity of ZnPc was completely quenched upon complexation via cation-π interactions, thereby significantly avoiding skin phototoxicity. Upon targeting tumor cells, NP undergoes a GSH-responsive degradation process that weakens cation-π interactions, leading to spontaneous restoration of photoactivity and amplifying tumor immunogenic pyroptosis. In vivo studies demonstrated that NP achieved a high tumor inhibition rate of 84% while effectively avoiding skin phototoxicity. This work provides a novel perspective for enhancing the safety and efficacy of PDT-based tumor treatment.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00140","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its clinical application is constrained by unexpected phototoxicity arising from nonspecific photosensitizer activation and their "always-on" nature. Herein, we developed a switchable nanophotosensitizer, poly(cation-π) nanoparticles (NP), which achieves supramolecular assembly through cation-π interactions. By coupling choline cationic moieties with aromatic photosensitizers (ZnPc), the polymer facilitates self-assembly driven by cation-π interactions for NP engineering. Surprisingly, the photoactivity of ZnPc was completely quenched upon complexation via cation-π interactions, thereby significantly avoiding skin phototoxicity. Upon targeting tumor cells, NP undergoes a GSH-responsive degradation process that weakens cation-π interactions, leading to spontaneous restoration of photoactivity and amplifying tumor immunogenic pyroptosis. In vivo studies demonstrated that NP achieved a high tumor inhibition rate of 84% while effectively avoiding skin phototoxicity. This work provides a novel perspective for enhancing the safety and efficacy of PDT-based tumor treatment.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.