UV-Responsive Adhesive Based on Polystyrene-block-Poly(Ethyl Lipoate) Copolymer.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Hyeongkeon Yoon, Yeojin Jeon, Eubin Mun, Dokyung Woo, Chungryong Choi, Jin Kon Kim
{"title":"UV-Responsive Adhesive Based on Polystyrene-block-Poly(Ethyl Lipoate) Copolymer.","authors":"Hyeongkeon Yoon, Yeojin Jeon, Eubin Mun, Dokyung Woo, Chungryong Choi, Jin Kon Kim","doi":"10.1002/marc.202401015","DOIUrl":null,"url":null,"abstract":"<p><p>Block copolymers (BCPs), capable of self-assembling into various nanoscale structures, are widely used in adhesives owing to their versatile properties. However, conventional BCP-based adhesives pose environmental concerns: they are petroleum-derived, non-degradable, and have a non-tunable adhesion strength. To address these challenges, a novel BCP is designed comprising a conventional hard segment, polystyrene (PS), and a green rubbery segment, poly(ethyl lipoate) (PEtLp), derived from the bio-based molecule α-lipoic acid. The PS-b-PEtLp is synthesized via the base-catalyzed ring-opening polymerization from thiol-terminated PS. Adhesion tests showed that PS-b-PEtLp with cylindrical nanostructures exhibited higher adhesion strength than that with lamellar structures. Importantly, the dynamic disulfide bonds in PEtLp enable a reversible and adjustable adhesion strength under UV light. Upon UV irradiation, the adhesion strength decreases by approximately half, facilitating easy separation from the adherends. Additionally, the selective depolymerization of the PEtLp block achieves 100% conversion, enabling the recovery of the monomer (EtLp) and macroinitiator (thiol-terminated PS). This study introduces a sustainable, degradable, and reusable adhesive derived from renewable resources, providing a promising solution to the environmental challenges associated with traditional petroleum-based adhesives.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401015"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401015","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Block copolymers (BCPs), capable of self-assembling into various nanoscale structures, are widely used in adhesives owing to their versatile properties. However, conventional BCP-based adhesives pose environmental concerns: they are petroleum-derived, non-degradable, and have a non-tunable adhesion strength. To address these challenges, a novel BCP is designed comprising a conventional hard segment, polystyrene (PS), and a green rubbery segment, poly(ethyl lipoate) (PEtLp), derived from the bio-based molecule α-lipoic acid. The PS-b-PEtLp is synthesized via the base-catalyzed ring-opening polymerization from thiol-terminated PS. Adhesion tests showed that PS-b-PEtLp with cylindrical nanostructures exhibited higher adhesion strength than that with lamellar structures. Importantly, the dynamic disulfide bonds in PEtLp enable a reversible and adjustable adhesion strength under UV light. Upon UV irradiation, the adhesion strength decreases by approximately half, facilitating easy separation from the adherends. Additionally, the selective depolymerization of the PEtLp block achieves 100% conversion, enabling the recovery of the monomer (EtLp) and macroinitiator (thiol-terminated PS). This study introduces a sustainable, degradable, and reusable adhesive derived from renewable resources, providing a promising solution to the environmental challenges associated with traditional petroleum-based adhesives.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信