A Versatile Flow Reactor Platform for Machine Learning Guided RAFT Synthesis, Amidation of Poly(Pentafluorophenyl Acrylate).

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Alexander P Grimm, Stephen T Knox, Clarissa Y P Wilding, Harry A Jones, Björn Schmidt, Olga Piskljonow, Dominik Voll, Christian W Schmitt, Nicholas J Warren, Patrick Théato
{"title":"A Versatile Flow Reactor Platform for Machine Learning Guided RAFT Synthesis, Amidation of Poly(Pentafluorophenyl Acrylate).","authors":"Alexander P Grimm, Stephen T Knox, Clarissa Y P Wilding, Harry A Jones, Björn Schmidt, Olga Piskljonow, Dominik Voll, Christian W Schmitt, Nicholas J Warren, Patrick Théato","doi":"10.1002/marc.202500264","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven polymer research has experienced a dramatic upswing in recent years owing to the emergence of artificial intelligence (AI) alongside automated laboratory synthesis. However, the chemical complexity of polymers employed in automated synthesis still lacks in terms of defined functionality to meet the need of next-generation high-performance polymer materials. In this work, the automated self-optimization of the reversible addition-fragmentation chain-transfer (RAFT) polymerization of pentafluorophenyl acrylate (PFPA) is presented, a versatile polymer building-block enabling efficient post-polymerization modifications (PPM). The polymerization system consisted of a computer-operated flow reactor with orthogonal analytics comprising an inline benchtop nuclear magnetic resonance (NMR) spectrometer, and an online size exclusion chromatography (SEC). This setup enabled the automatic determination of optimal polymerization conditions by implementation of a multi-objective Bayesian self-optimization algorithm. The obtained poly(PFPA) is precisely modified by amidation taking advantage of the active pentafluorophenyl (PFP) ester. By controlling the feed ratios of solutions containing different amines, their incorporation ratio into the polymer, and therefore its resulting properties, can be tuned and predicted, which is shown using NMR, differential scanning calorimetry (DSC), and infrared (IR) analysis. The described strategy represents a versatile method to synthesize and modify reactive polymers in continuous flow, expanding the range of functional polymer materials accessible by continuous, high-throughput synthesis.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500264"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500264","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven polymer research has experienced a dramatic upswing in recent years owing to the emergence of artificial intelligence (AI) alongside automated laboratory synthesis. However, the chemical complexity of polymers employed in automated synthesis still lacks in terms of defined functionality to meet the need of next-generation high-performance polymer materials. In this work, the automated self-optimization of the reversible addition-fragmentation chain-transfer (RAFT) polymerization of pentafluorophenyl acrylate (PFPA) is presented, a versatile polymer building-block enabling efficient post-polymerization modifications (PPM). The polymerization system consisted of a computer-operated flow reactor with orthogonal analytics comprising an inline benchtop nuclear magnetic resonance (NMR) spectrometer, and an online size exclusion chromatography (SEC). This setup enabled the automatic determination of optimal polymerization conditions by implementation of a multi-objective Bayesian self-optimization algorithm. The obtained poly(PFPA) is precisely modified by amidation taking advantage of the active pentafluorophenyl (PFP) ester. By controlling the feed ratios of solutions containing different amines, their incorporation ratio into the polymer, and therefore its resulting properties, can be tuned and predicted, which is shown using NMR, differential scanning calorimetry (DSC), and infrared (IR) analysis. The described strategy represents a versatile method to synthesize and modify reactive polymers in continuous flow, expanding the range of functional polymer materials accessible by continuous, high-throughput synthesis.

用于机器学习引导RAFT合成,聚(五氟苯基丙烯酸酯)酰胺化的多功能流动反应器平台。
近年来,由于人工智能(AI)和自动化实验室合成的出现,数据驱动的聚合物研究经历了一个戏剧性的上升。然而,用于自动化合成的聚合物的化学复杂性仍然缺乏明确的功能来满足下一代高性能聚合物材料的需要。在这项工作中,提出了五氟苯基丙烯酸酯(PFPA)可逆加成-破碎链转移(RAFT)聚合的自动自优化,这是一种通用的聚合物构件,可以实现高效的聚合后改性(PPM)。聚合系统由计算机操作的流动反应器和正交分析组成,正交分析包括一个在线台式核磁共振(NMR)光谱仪和一个在线尺寸排除色谱(SEC)。该装置通过实现多目标贝叶斯自优化算法,实现了最佳聚合条件的自动确定。利用活性五氟苯基(PFP)酯对所制得的聚氟苯基(PFPA)进行了精确的酰胺化改性。通过控制含有不同胺的溶液的进料比,可以调节和预测它们在聚合物中的掺入比,从而预测其性能,这可以通过核磁共振、差示扫描量热法(DSC)和红外(IR)分析来证明。所描述的策略代表了一种在连续流动中合成和修饰活性聚合物的通用方法,扩大了通过连续、高通量合成可获得的功能聚合物材料的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信