Zongfu Cai, Bo Wu, Xinxing Zhou, Kerui Li, Chengyi Hou, Qinghong Zhang, Yaogang Li, Hongzhi Wang
{"title":"High-Performance Temperature Sensors for Early Warning Utilizing Flexible All-Inorganic Thermoelectric Films.","authors":"Zongfu Cai, Bo Wu, Xinxing Zhou, Kerui Li, Chengyi Hou, Qinghong Zhang, Yaogang Li, Hongzhi Wang","doi":"10.1021/acsami.5c00610","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for highly sensitive temperature-response materials is critical for the advancement of intelligent temperature sensing and fire warning systems. Despite notable progress in thermoelectrical (TE) materials and devices, designing TE materials suitable for wide-range temperature monitoring across diverse scenarios remains a challenge. In this study, we introduce a TE temperature sensor for fire warnings and hot object recognition, utilizing an all-inorganic TE film composite of reduced graphene oxide (rGO)/Te nanowires (Te NWs). The resulting all-inorganic TE film, annealed at a high temperature, exhibits distinct response ratios to varying temperature changes, enabling consistently sensitive thermosensation. The robust linear relationship between open circuit voltage and temperature difference establishes it as an effective thermoreceptor for enhanced temperature alerts. Furthermore, we demonstrate that the assembled TE sensor provides rapid high-temperature warnings with adjustable threshold voltages (1-7 mV), achieving an ultrafast response time of approximately 4.8 s at 1 mV threshold voltage. Additionally, this TE sensor can be integrated with the gloves to monitor high-temperature objects in various scenarios, such as the brewed milk in daily life and heating reactors in industrial applications. These results offer perspectives for future innovations in intelligent temperature monitoring.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00610","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for highly sensitive temperature-response materials is critical for the advancement of intelligent temperature sensing and fire warning systems. Despite notable progress in thermoelectrical (TE) materials and devices, designing TE materials suitable for wide-range temperature monitoring across diverse scenarios remains a challenge. In this study, we introduce a TE temperature sensor for fire warnings and hot object recognition, utilizing an all-inorganic TE film composite of reduced graphene oxide (rGO)/Te nanowires (Te NWs). The resulting all-inorganic TE film, annealed at a high temperature, exhibits distinct response ratios to varying temperature changes, enabling consistently sensitive thermosensation. The robust linear relationship between open circuit voltage and temperature difference establishes it as an effective thermoreceptor for enhanced temperature alerts. Furthermore, we demonstrate that the assembled TE sensor provides rapid high-temperature warnings with adjustable threshold voltages (1-7 mV), achieving an ultrafast response time of approximately 4.8 s at 1 mV threshold voltage. Additionally, this TE sensor can be integrated with the gloves to monitor high-temperature objects in various scenarios, such as the brewed milk in daily life and heating reactors in industrial applications. These results offer perspectives for future innovations in intelligent temperature monitoring.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.