Investigating Bubble Formation and Evolution in Vanadium Redox Flow Batteries via Synchrotron X-Ray Imaging.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-04-09 DOI:10.1002/cssc.202500282
Kangjun Duan, Kerstin Köble, Alexey Ershov, Monja Schilling, Alexander Rampf, Angelica Cecilia, Tomáš Faragó, Marcus Zuber, Tilo Baumbach, Pang-Chieh Sui, Roswitha Zeis
{"title":"Investigating Bubble Formation and Evolution in Vanadium Redox Flow Batteries via Synchrotron X-Ray Imaging.","authors":"Kangjun Duan, Kerstin Köble, Alexey Ershov, Monja Schilling, Alexander Rampf, Angelica Cecilia, Tomáš Faragó, Marcus Zuber, Tilo Baumbach, Pang-Chieh Sui, Roswitha Zeis","doi":"10.1002/cssc.202500282","DOIUrl":null,"url":null,"abstract":"<p><p>The parasitic hydrogen evolution reaction (HER) hinders electrolyte transport. It reduces the effective electrochemical surface area in the negative half-cell of vanadium redox flow batteries (VRFBs), resulting in substantial efficiency losses. We investigated the formation and evolution of hydrogen bubbles within VRFB electrodes through comprehensive experimental characterization and a detailed analysis of the resolved bubbles. The electrode was imaged using synchrotron X-ray tomography, and gas bubbles in the images were identified and characterized using a deep learning model combined with a morphological analysis tool. The HER intensity increases at more negative working electrode potentials, causing residual bubbles to grow and fuse in the electrode central region. In contrast, independent bubbles predominantly form at the electrode edges. Furthermore, the bubble growth leads to the gradual development of irregular shapes. These observations provide insights into bubble formation and evolution rules, contributing to a better understanding of the system.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500282"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500282","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The parasitic hydrogen evolution reaction (HER) hinders electrolyte transport. It reduces the effective electrochemical surface area in the negative half-cell of vanadium redox flow batteries (VRFBs), resulting in substantial efficiency losses. We investigated the formation and evolution of hydrogen bubbles within VRFB electrodes through comprehensive experimental characterization and a detailed analysis of the resolved bubbles. The electrode was imaged using synchrotron X-ray tomography, and gas bubbles in the images were identified and characterized using a deep learning model combined with a morphological analysis tool. The HER intensity increases at more negative working electrode potentials, causing residual bubbles to grow and fuse in the electrode central region. In contrast, independent bubbles predominantly form at the electrode edges. Furthermore, the bubble growth leads to the gradual development of irregular shapes. These observations provide insights into bubble formation and evolution rules, contributing to a better understanding of the system.

同步x射线成像研究钒氧化还原液流电池中气泡的形成和演化。
寄生析氢反应(HER)阻碍了电解质的运输。它降低了钒氧化还原液流电池(vrfb)负半电池的有效电化学表面积,导致了大量的效率损失。我们通过全面的实验表征和对分解气泡的详细分析,研究了VRFB电极内氢气气泡的形成和演化。使用同步加速器x射线断层扫描对电极进行成像,并使用深度学习模型结合形态分析工具对图像中的气泡进行识别和表征。当工作电极电位越负时,HER强度增加,导致电极中心区域残余气泡生长和融合。相反,独立气泡主要在电极边缘形成。此外,气泡的增长导致不规则形状的逐渐发展。这些观察提供了对气泡形成和演化规律的见解,有助于更好地了解系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信