Predicting spatio-temporal dynamics of dengue using INLA (integrated nested laplace approximation) in Yogyakarta, Indonesia.

IF 3.5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Marko Ferdian Salim, Tri Baskoro Tunggul Satoto, Danardono
{"title":"Predicting spatio-temporal dynamics of dengue using INLA (integrated nested laplace approximation) in Yogyakarta, Indonesia.","authors":"Marko Ferdian Salim, Tri Baskoro Tunggul Satoto, Danardono","doi":"10.1186/s12889-025-22545-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Dengue is a mosquito-borne disease caused by the dengue virus, primarily transmitted by Aedes aegypti and Aedes albopictus. Its incidence fluctuates due to spatial and temporal factors, necessitating robust modeling approaches for prediction and risk mapping.</p><p><strong>Objectives: </strong>This study aims to develop a spatio-temporal Bayesian model for predicting dengue incidence, integrating climatic, sociodemographic, and environmental factors to improve outbreak forecasting.</p><p><strong>Methods: </strong>An ecological study was conducted in the Special Region of Yogyakarta, Indonesia (January 2017-December 2022) using monthly panel data from 78 sub-districts. Secondary data sources included dengue surveillance (Health Office), meteorological data (NASA POWER), sociodemographic data (BPS-Statistics Indonesia), and land use data (Sentinel-2, ESRI). Predictors included rainfall, temperature, humidity, wind speed, atmospheric pressure, population density, and land use patterns. Data analysis was performed using R-INLA, with model performance assessed using Deviance Information Criterion (DIC), Watanabe-Akaike Information Criterion (WAIC), marginal log-likelihood, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).</p><p><strong>Results: </strong>The INLA-based Bayesian model effectively captured spatial and temporal dengue dynamics. Key predictors included rainfall lag 1 and 2 (mean = 0.001), temperature (mean = 0.151, CI: 0.090-0.210), humidity (mean = 0.056, CI: 0.040-0.073), built area (mean = 0.001), and water area (mean = 0.008, CI: 0.005-0.011). Spatial clustering (BYM model, precision = 2163.53) indicated that dengue cases were concentrated in specific areas. The RW2 model (precision = 49.11) confirmed seasonal trends, highlighting climate's role in disease transmission. Model evaluation metrics (DIC = 15017.88, WAIC = 15294.54, log-likelihood = -7845.857) demonstrated good predictive performance. Furthermore, the model's accuracy was assessed using MAE and RMSE values, where MAE = 1.77 indicates an average prediction error of 1-2 cases, while RMSE = 2.97 suggests the presence of occasional larger discrepancies. The RMSE's higher value relative to MAE highlights instances where prediction errors were more significant, as RMSE is more sensitive to large deviations.</p><p><strong>Conclusions: </strong>The INLA-based spatio-temporal model is an effective tool for dengue prediction, offering valuable insights for early warning systems and targeted vector control strategies, thereby improving disease prevention and response efforts.</p>","PeriodicalId":9039,"journal":{"name":"BMC Public Health","volume":"25 1","pages":"1321"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12889-025-22545-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Dengue is a mosquito-borne disease caused by the dengue virus, primarily transmitted by Aedes aegypti and Aedes albopictus. Its incidence fluctuates due to spatial and temporal factors, necessitating robust modeling approaches for prediction and risk mapping.

Objectives: This study aims to develop a spatio-temporal Bayesian model for predicting dengue incidence, integrating climatic, sociodemographic, and environmental factors to improve outbreak forecasting.

Methods: An ecological study was conducted in the Special Region of Yogyakarta, Indonesia (January 2017-December 2022) using monthly panel data from 78 sub-districts. Secondary data sources included dengue surveillance (Health Office), meteorological data (NASA POWER), sociodemographic data (BPS-Statistics Indonesia), and land use data (Sentinel-2, ESRI). Predictors included rainfall, temperature, humidity, wind speed, atmospheric pressure, population density, and land use patterns. Data analysis was performed using R-INLA, with model performance assessed using Deviance Information Criterion (DIC), Watanabe-Akaike Information Criterion (WAIC), marginal log-likelihood, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

Results: The INLA-based Bayesian model effectively captured spatial and temporal dengue dynamics. Key predictors included rainfall lag 1 and 2 (mean = 0.001), temperature (mean = 0.151, CI: 0.090-0.210), humidity (mean = 0.056, CI: 0.040-0.073), built area (mean = 0.001), and water area (mean = 0.008, CI: 0.005-0.011). Spatial clustering (BYM model, precision = 2163.53) indicated that dengue cases were concentrated in specific areas. The RW2 model (precision = 49.11) confirmed seasonal trends, highlighting climate's role in disease transmission. Model evaluation metrics (DIC = 15017.88, WAIC = 15294.54, log-likelihood = -7845.857) demonstrated good predictive performance. Furthermore, the model's accuracy was assessed using MAE and RMSE values, where MAE = 1.77 indicates an average prediction error of 1-2 cases, while RMSE = 2.97 suggests the presence of occasional larger discrepancies. The RMSE's higher value relative to MAE highlights instances where prediction errors were more significant, as RMSE is more sensitive to large deviations.

Conclusions: The INLA-based spatio-temporal model is an effective tool for dengue prediction, offering valuable insights for early warning systems and targeted vector control strategies, thereby improving disease prevention and response efforts.

利用INLA(集成嵌套拉普拉斯近似)预测印度尼西亚日惹登革热的时空动态。
登革热是一种由登革热病毒引起的蚊媒疾病,主要由埃及伊蚊和白纹伊蚊传播。其发病率因空间和时间因素而波动,因此需要采用稳健的建模方法进行预测和绘制风险图。目的:综合气候、社会人口和环境因素,建立登革热发病时空贝叶斯预测模型,提高登革热疫情预测水平。方法:利用来自78个街道的月度面板数据,于2017年1月至2022年12月在印度尼西亚日惹特区进行了一项生态研究。次要数据来源包括登革热监测(卫生局)、气象数据(NASA POWER)、社会人口统计数据(BPS-Statistics Indonesia)和土地利用数据(Sentinel-2, ESRI)。预测指标包括降雨量、温度、湿度、风速、大气压、人口密度和土地利用模式。使用R-INLA进行数据分析,使用偏差信息标准(DIC)、Watanabe-Akaike信息标准(WAIC)、边际对数似然、平均绝对误差(MAE)和均方根误差(RMSE)评估模型性能。结果:基于inla的贝叶斯模型有效捕获了登革热的时空动态。关键预测因子包括降雨滞后1和滞后2(平均值= 0.001)、温度(平均值= 0.151,CI: 0.090-0.210)、湿度(平均值= 0.056,CI: 0.040-0.073)、建筑面积(平均值= 0.001)和水域面积(平均值= 0.008,CI: 0.005-0.011)。空间聚类(BYM模型,精度= 2163.53)表明登革热病例集中在特定区域;RW2模型(精度= 49.11)证实了季节趋势,突出了气候在疾病传播中的作用。模型评价指标(DIC = 15017.88, WAIC = 15294.54, log-likelihood = -7845.857)表现出良好的预测性能。此外,使用MAE和RMSE值评估模型的准确性,其中MAE = 1.77表示平均预测误差为1-2例,而RMSE = 2.97表示偶尔存在较大的差异。RMSE相对于MAE的较高值突出了预测误差更显著的实例,因为RMSE对大偏差更敏感。结论:基于inla的时空模型是登革热预测的有效工具,可为早期预警系统和有针对性的病媒控制策略提供有价值的见解,从而改善疾病预防和应对工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Public Health
BMC Public Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.50
自引率
4.40%
发文量
2108
审稿时长
1 months
期刊介绍: BMC Public Health is an open access, peer-reviewed journal that considers articles on the epidemiology of disease and the understanding of all aspects of public health. The journal has a special focus on the social determinants of health, the environmental, behavioral, and occupational correlates of health and disease, and the impact of health policies, practices and interventions on the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信