{"title":"Combined effects of ambient air pollution and temperature on mortality in Thailand.","authors":"Arthit Phosri, Wuttichai Srisodaphol, Kamolrat Sangkharat","doi":"10.1007/s00484-025-02913-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the combined effects of air pollution and temperature on mortality in 34 provinces of Thailand by modeling temperature as a confounding factor and effect modifier, estimating the effects of air pollution at low, moderate, and high temperature categories defined by the 1st and 99th province-specific temperature percentiles. When the temperature was modeled as a confounding factor, the relative risk (RR) of mortality associated with a 10 µg/m<sup>3</sup> increase in PM<sub>10</sub> and PM<sub>2.5</sub> (lag 0-2), and a 10-ppb increase in NO<sub>2</sub> (lag 0-2) and O<sub>3</sub> (lag 0-7) was respectively 1.0096 (95% Confidence Interval (CI): 1.0073, 1.0118), 1.0134 (95% CI: 1.0099, 1.0170), 1.0172 (95% CI: 1.0122, 1.0222), and 1.0164 (95% CI: 1.0093, 1.0236). Regarding temperature as an effect modifier, the combined effects of air pollution and temperature were observed as a U-shaped pattern, where the effects of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub> on mortality were greater at low (< 1st percentile) and high (> 99th percentile) temperature days compared to those at moderate temperature days (1st - 99th percentile). The pattern of combined effects of air pollution and temperature remained robust even when different temperature percentiles were employed, except for that of NO<sub>2</sub>. Furthermore, the estimated effects of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub> on mortality at high-temperature days were mitigated by high green density. Findings of this study revealed that extreme temperature (both hot and cold) could exacerbate the effect of air pollution on mortality, and higher green density mitigate the combined effects of air pollution and high temperature.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-025-02913-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the combined effects of air pollution and temperature on mortality in 34 provinces of Thailand by modeling temperature as a confounding factor and effect modifier, estimating the effects of air pollution at low, moderate, and high temperature categories defined by the 1st and 99th province-specific temperature percentiles. When the temperature was modeled as a confounding factor, the relative risk (RR) of mortality associated with a 10 µg/m3 increase in PM10 and PM2.5 (lag 0-2), and a 10-ppb increase in NO2 (lag 0-2) and O3 (lag 0-7) was respectively 1.0096 (95% Confidence Interval (CI): 1.0073, 1.0118), 1.0134 (95% CI: 1.0099, 1.0170), 1.0172 (95% CI: 1.0122, 1.0222), and 1.0164 (95% CI: 1.0093, 1.0236). Regarding temperature as an effect modifier, the combined effects of air pollution and temperature were observed as a U-shaped pattern, where the effects of PM10, PM2.5, NO2, and O3 on mortality were greater at low (< 1st percentile) and high (> 99th percentile) temperature days compared to those at moderate temperature days (1st - 99th percentile). The pattern of combined effects of air pollution and temperature remained robust even when different temperature percentiles were employed, except for that of NO2. Furthermore, the estimated effects of PM10, PM2.5, NO2, and O3 on mortality at high-temperature days were mitigated by high green density. Findings of this study revealed that extreme temperature (both hot and cold) could exacerbate the effect of air pollution on mortality, and higher green density mitigate the combined effects of air pollution and high temperature.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.