Programmable Metamaterials with Perforated Shell Group Supporting Versatile Information Processing.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyuan Ma, Ziran Wang, Weipeng Zhang, Peng Yan
{"title":"Programmable Metamaterials with Perforated Shell Group Supporting Versatile Information Processing.","authors":"Xiaoyuan Ma, Ziran Wang, Weipeng Zhang, Peng Yan","doi":"10.1002/advs.202417784","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical metamaterials have emerged as promising tools for enabling mechanical intelligence in soft machines through interaction with the external environment. Note that most representative results in the literature focused on certain features of information processing with the designs of novel metamaterials. It remains challenging to design metamaterials with more integrated information processing capabilities toward comprehensive intelligence. In this work, a novel approach employing programmable multi-stability of perforated shells (PS) with staggered trapezoidal voids is proposed to develop transformable, information-processing metamaterials with high-density information. Multi-layer information storage, encoding, decoding, and reading are achieved by designing and arranging different types of PSs under mechanical compression or magnetic actuation. In addition, various application-oriented functionalities, such as information encryption, mechanical computing, wave amplification, and pressure transmission, are also demonstrated by taking advantage of the stable memory and tunable stiffness distributions of metamaterials. The proposed design strategy paves the way for multifunctional, miniaturized, and scalable information mechanical metamaterials, with significant potential for soft-material-based intelligent devices.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2417784"},"PeriodicalIF":14.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202417784","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical metamaterials have emerged as promising tools for enabling mechanical intelligence in soft machines through interaction with the external environment. Note that most representative results in the literature focused on certain features of information processing with the designs of novel metamaterials. It remains challenging to design metamaterials with more integrated information processing capabilities toward comprehensive intelligence. In this work, a novel approach employing programmable multi-stability of perforated shells (PS) with staggered trapezoidal voids is proposed to develop transformable, information-processing metamaterials with high-density information. Multi-layer information storage, encoding, decoding, and reading are achieved by designing and arranging different types of PSs under mechanical compression or magnetic actuation. In addition, various application-oriented functionalities, such as information encryption, mechanical computing, wave amplification, and pressure transmission, are also demonstrated by taking advantage of the stable memory and tunable stiffness distributions of metamaterials. The proposed design strategy paves the way for multifunctional, miniaturized, and scalable information mechanical metamaterials, with significant potential for soft-material-based intelligent devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信