Aijia Yang, Li Chen, Shunxin Tang, Xiaolu Guo, Hongqin Su, Bang-Ping Jiang, Xing-Can Shen
{"title":"Light/Ultrasound Dual Responsive Carbon Dots-Based Nanovaccines for Multimodal Activation Tumor Immunotherapy of Melanoma.","authors":"Aijia Yang, Li Chen, Shunxin Tang, Xiaolu Guo, Hongqin Su, Bang-Ping Jiang, Xing-Can Shen","doi":"10.1002/adhm.202405194","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is a highly aggressive and metastatic tumor, and immunotherapy has become the current solution. However, conventional nanovaccines do not strongly activate T cell immune responses. Therefore, development of effective therapeutic nanovaccines to activate systemic antitumor immunity is urgently required. Herein, light/ultrasound (US) dual-responsive carbon dot-based nanovaccines (Cu-N-CDs@OVA) are designed using copper-nitrogen-coordinated carbon dots composited with ovalbumin. Under 650-nm laser irradiation, Cu-N-CDs@OVA exhibited superior photothermal ablation of primary tumors, induced immunogenic cell death and released antigens by phototherapy, facilitating the maturation of dendritic cells (DCs). More importantly, Cu-N-CDs@OVA stably penetrated and diffused upon US treatment, eradicating metastatic tumors and generating low-dose reactive oxygen species to activate DCs. By integrating with the model antigen OVA, the combined multimodal treatment promotes DC maturation to activate systematic antitumor immunity. This is the first example of a light/US dual-responsive therapeutic nanovaccine that provides a paradigm for the production of personalized nanovaccines against malignant tumors.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2405194"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202405194","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Melanoma is a highly aggressive and metastatic tumor, and immunotherapy has become the current solution. However, conventional nanovaccines do not strongly activate T cell immune responses. Therefore, development of effective therapeutic nanovaccines to activate systemic antitumor immunity is urgently required. Herein, light/ultrasound (US) dual-responsive carbon dot-based nanovaccines (Cu-N-CDs@OVA) are designed using copper-nitrogen-coordinated carbon dots composited with ovalbumin. Under 650-nm laser irradiation, Cu-N-CDs@OVA exhibited superior photothermal ablation of primary tumors, induced immunogenic cell death and released antigens by phototherapy, facilitating the maturation of dendritic cells (DCs). More importantly, Cu-N-CDs@OVA stably penetrated and diffused upon US treatment, eradicating metastatic tumors and generating low-dose reactive oxygen species to activate DCs. By integrating with the model antigen OVA, the combined multimodal treatment promotes DC maturation to activate systematic antitumor immunity. This is the first example of a light/US dual-responsive therapeutic nanovaccine that provides a paradigm for the production of personalized nanovaccines against malignant tumors.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.