Insights into the Versatile and Efficient Characteristics, Classifications, and Rational Design of Surface-Grafted Smart Hydrogels.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nehal, Shikha Awasthi
{"title":"Insights into the Versatile and Efficient Characteristics, Classifications, and Rational Design of Surface-Grafted Smart Hydrogels.","authors":"Nehal, Shikha Awasthi","doi":"10.1002/asia.202500441","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels have emerged as flexible biomaterials with enormous potential in biomedical applications due to their outstanding biocompatibility and ability to hold a high water concentration. Hydrogels have low toxicity and are biodegradable. This review begins with a look at the various riveting characteristics and classifications of hydrogel nanocomposites reinforced with various metallic and ceramic components. A distinct focus is offered on thoroughly deliberating surface modification techniques with special attention on fabrication, patterning, and their applications in biomedical fields. The review describes the value of novel cross-linking techniques including physical, chemical, and physical-chemical dual cross-linking in adapting hydrogel characteristics to specific applications. This review also explains the major bioapplication of functionalized hydrogels. It emphasizes the importance of nanocomposite hydrogels and multifunctional self-assembled monolayers in solving contemporary biological difficulties such as infection control, medication delivery, and tissue regeneration. It explains the need for interdisciplinary collaboration and ongoing research efforts to realize the full potential of hydrogels and nanomaterials in biomedical applications. Overall, this review gives useful insights into current advances and future possibilities for hydrogels grafted with metals and ceramic additives in biomedical applications, highlighting the need for multidisciplinary cooperation and ongoing research in nano(bio)technology.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202500441"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500441","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels have emerged as flexible biomaterials with enormous potential in biomedical applications due to their outstanding biocompatibility and ability to hold a high water concentration. Hydrogels have low toxicity and are biodegradable. This review begins with a look at the various riveting characteristics and classifications of hydrogel nanocomposites reinforced with various metallic and ceramic components. A distinct focus is offered on thoroughly deliberating surface modification techniques with special attention on fabrication, patterning, and their applications in biomedical fields. The review describes the value of novel cross-linking techniques including physical, chemical, and physical-chemical dual cross-linking in adapting hydrogel characteristics to specific applications. This review also explains the major bioapplication of functionalized hydrogels. It emphasizes the importance of nanocomposite hydrogels and multifunctional self-assembled monolayers in solving contemporary biological difficulties such as infection control, medication delivery, and tissue regeneration. It explains the need for interdisciplinary collaboration and ongoing research efforts to realize the full potential of hydrogels and nanomaterials in biomedical applications. Overall, this review gives useful insights into current advances and future possibilities for hydrogels grafted with metals and ceramic additives in biomedical applications, highlighting the need for multidisciplinary cooperation and ongoing research in nano(bio)technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信