Wet chemical synthesis of nanohydroxyapatite within poly(sodium sulfonated butylene fumarate-co-acrylic acid) as bone scaffold: effects of sulfonate and carboxylic acid groups

IF 2.9 4区 化学 Q2 POLYMER SCIENCE
Nadia Mahmoudzadeh, Hadi Shirali, Faramarz Afshar Taromi
{"title":"Wet chemical synthesis of nanohydroxyapatite within poly(sodium sulfonated butylene fumarate-co-acrylic acid) as bone scaffold: effects of sulfonate and carboxylic acid groups","authors":"Nadia Mahmoudzadeh,&nbsp;Hadi Shirali,&nbsp;Faramarz Afshar Taromi","doi":"10.1002/pi.6738","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the synthesis, nucleation and modification of biodegradable poly(sodium sulfonated butylene fumarate-<i>co</i>-acrylic acid)/hydroxyapatite nanocomposite scaffolds for bone tissue engineering, with a focus on the effects of incorporating hydrophilic sulfonate and carboxylic acid groups. Poly(butylene fumarate) was sulfonated at varying degrees and used to form nanocomposites through <i>in situ</i> nucleation of nanohydroxyapatite (nHA) in a simulated body fluid solution. Critical parameters such as water absorption, swelling behavior, mechanical properties, nanoparticle dispersion and biocompatibility were evaluated. Water uptake ratios ranged from 2.72 to 6.88 g g<sup>−1</sup>, while compressive modulus values increased up to 25.9 times compared with the corresponding homopolymers, demonstrating improved mechanical stability. Despite the formation of over 80% nanoparticles, well-distributed nHA, with sizes averaging 39 ± 13 nm, was achieved through the incorporation of sulfonated groups, preventing nanoparticle agglomeration within the scaffold matrix. Additionally, the scaffolds supported human dermal fibroblast adhesion and proliferation, with cell viability remaining high throughout the culture period. These results suggest that the developed nanocomposite scaffolds offer enhanced biocompatibility, mechanical strength and osteogenic potential, making them promising candidates for bone tissue regeneration applications. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 5","pages":"434-443"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6738","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the synthesis, nucleation and modification of biodegradable poly(sodium sulfonated butylene fumarate-co-acrylic acid)/hydroxyapatite nanocomposite scaffolds for bone tissue engineering, with a focus on the effects of incorporating hydrophilic sulfonate and carboxylic acid groups. Poly(butylene fumarate) was sulfonated at varying degrees and used to form nanocomposites through in situ nucleation of nanohydroxyapatite (nHA) in a simulated body fluid solution. Critical parameters such as water absorption, swelling behavior, mechanical properties, nanoparticle dispersion and biocompatibility were evaluated. Water uptake ratios ranged from 2.72 to 6.88 g g−1, while compressive modulus values increased up to 25.9 times compared with the corresponding homopolymers, demonstrating improved mechanical stability. Despite the formation of over 80% nanoparticles, well-distributed nHA, with sizes averaging 39 ± 13 nm, was achieved through the incorporation of sulfonated groups, preventing nanoparticle agglomeration within the scaffold matrix. Additionally, the scaffolds supported human dermal fibroblast adhesion and proliferation, with cell viability remaining high throughout the culture period. These results suggest that the developed nanocomposite scaffolds offer enhanced biocompatibility, mechanical strength and osteogenic potential, making them promising candidates for bone tissue regeneration applications. © 2024 Society of Chemical Industry.

Abstract Image

纳米羟基磷灰石在聚(磺化富马酸丁二钠-共丙烯酸)内作为骨支架的湿化学合成:磺酸基和羧酸基的影响
本研究研究了可生物降解的聚(磺化富马酸丁二钠-共丙烯酸)/羟基磷灰石纳米复合骨组织工程支架的合成、成核和改性,重点研究了掺入亲水性磺酸基和羧酸基的效果。聚富马酸丁烯在不同程度上磺化,并在模拟体液溶液中通过纳米羟基磷灰石(nHA)的原位成核形成纳米复合材料。对其吸水率、溶胀性能、力学性能、纳米颗粒分散性和生物相容性等关键参数进行了评价。吸水率从2.72到6.88 g g−1不等,而压缩模量值与相应的均聚物相比增加了25.9倍,显示出更好的机械稳定性。尽管形成了超过80%的纳米颗粒,但通过加入磺化基团,防止纳米颗粒在支架基质内团聚,实现了均匀分布的nHA,平均尺寸为39±13 nm。此外,支架支持人真皮成纤维细胞粘附和增殖,在整个培养期间细胞活力保持较高。这些结果表明,所开发的纳米复合支架具有增强的生物相容性,机械强度和成骨潜力,使其成为骨组织再生应用的有希望的候选材料。©2024化学工业学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信