Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices (Adv. Mater. 14/2025)

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peter Serles, Jinwook Yeo, Michel Haché, Pedro Guerra Demingos, Jonathan Kong, Pascal Kiefer, Somayajulu Dhulipala, Boran Kumral, Katherine Jia, Shuo Yang, Tianjie Feng, Charles Jia, Pulickel M. Ajayan, Carlos M. Portela, Martin Wegener, Jane Howe, Chandra Veer Singh, Yu Zou, Seunghwa Ryu, Tobin Filleter
{"title":"Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices (Adv. Mater. 14/2025)","authors":"Peter Serles,&nbsp;Jinwook Yeo,&nbsp;Michel Haché,&nbsp;Pedro Guerra Demingos,&nbsp;Jonathan Kong,&nbsp;Pascal Kiefer,&nbsp;Somayajulu Dhulipala,&nbsp;Boran Kumral,&nbsp;Katherine Jia,&nbsp;Shuo Yang,&nbsp;Tianjie Feng,&nbsp;Charles Jia,&nbsp;Pulickel M. Ajayan,&nbsp;Carlos M. Portela,&nbsp;Martin Wegener,&nbsp;Jane Howe,&nbsp;Chandra Veer Singh,&nbsp;Yu Zou,&nbsp;Seunghwa Ryu,&nbsp;Tobin Filleter","doi":"10.1002/adma.202570108","DOIUrl":null,"url":null,"abstract":"<p><b>Bayesian Optimization of Carbon Nanolattices</b></p><p>Machine Learning designs new nanolattice geometries with the strength of carbon steel, but the density of Styrofoam, offering record strength-to-weight of lightweight materials. By implementing multi-objective Bayesian optimization in combination with two-photon polymerization and pyrolysis, these ultrahigh specific strength carbon nanolattices more than double the performance of benchmark materials. More details can be found in article number 2410651 by Peter Serles, Tobin Filleter, Seunghwa Ryu, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 14","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202570108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202570108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian Optimization of Carbon Nanolattices

Machine Learning designs new nanolattice geometries with the strength of carbon steel, but the density of Styrofoam, offering record strength-to-weight of lightweight materials. By implementing multi-objective Bayesian optimization in combination with two-photon polymerization and pyrolysis, these ultrahigh specific strength carbon nanolattices more than double the performance of benchmark materials. More details can be found in article number 2410651 by Peter Serles, Tobin Filleter, Seunghwa Ryu, and co-workers.

Abstract Image

碳纳米晶格的超高比强度贝叶斯优化(Adv. Mater. 14/2025)
碳纳米晶格的贝叶斯优化机器学习设计了新的纳米晶格几何形状,具有碳钢的强度,但聚苯乙烯泡沫塑料的密度,提供轻质材料的创纪录强度重量比。通过实施多目标贝叶斯优化,结合双光子聚合和热解,这些超高比强度的碳纳米晶格的性能是基准材料的两倍以上。更多细节可以在Peter Serles, Tobin filletter, Seunghwa Ryu及其同事的文章编号2410651中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信