Carboxymethyl Cellulose (CMC)-Reinforced Polyvinyl Alcohol (PVA) Fibrillar Composite Membranes: Production by Centrifugal Spinning and Characterization
{"title":"Carboxymethyl Cellulose (CMC)-Reinforced Polyvinyl Alcohol (PVA) Fibrillar Composite Membranes: Production by Centrifugal Spinning and Characterization","authors":"Enes Atas, Abdulbaki Belet, Murat Kazanci","doi":"10.1155/adv/2382763","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The use of centrifugal spinning as a method for producing nanofibers has advantages over other methods, such as high production rates, large-scale production, and no need for high voltage. In this work, two different biodegradable materials are used in different mixture ratios to produce biodegradable composite fibrous membranes. Characterization methods demonstrated that the amount of added carboxymethyl cellulose (CMC) significantly affects the fiber formation and end-product properties. When the concentration of CMC is increased, the membranes become mechanically stronger, whereas the fiber formation ability becomes weaker. The CMC crystal clusters and their heterogeneous distribution determine the optical properties of the membranes. These fibrillar composite membranes are suitable for use in biodegradable and eco-friendly filtration systems.</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/2382763","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/adv/2382763","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of centrifugal spinning as a method for producing nanofibers has advantages over other methods, such as high production rates, large-scale production, and no need for high voltage. In this work, two different biodegradable materials are used in different mixture ratios to produce biodegradable composite fibrous membranes. Characterization methods demonstrated that the amount of added carboxymethyl cellulose (CMC) significantly affects the fiber formation and end-product properties. When the concentration of CMC is increased, the membranes become mechanically stronger, whereas the fiber formation ability becomes weaker. The CMC crystal clusters and their heterogeneous distribution determine the optical properties of the membranes. These fibrillar composite membranes are suitable for use in biodegradable and eco-friendly filtration systems.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.