Preparation of polyhydroxyalkanoate nanocomposites for biomedical applications

IF 3.6 4区 化学 Q2 POLYMER SCIENCE
Jia Chen, Chunjie Gong
{"title":"Preparation of polyhydroxyalkanoate nanocomposites for biomedical applications","authors":"Jia Chen,&nbsp;Chunjie Gong","doi":"10.1002/pi.6742","DOIUrl":null,"url":null,"abstract":"<p>Polyhydroxyalkanoates (PHAs) have been recognized as potential replacements for fossil fuel-based, non-biodegradable plastics. PHAs exhibit properties that are analogous to those of synthetic plastics. The production of PHAs offers a multitude of advantages, primarily due to their biodegradability and biocompatibility. The most naturally occurring form of PHAs are the polyhydroxybutyrates (P(3HB)s). The major limitations of P(3HB)s are their brittle nature and inferior mechanical properties. Hence, these biopolymers have been observed to have limited biotechnological applications. In contrast to P(3HB)s, copolymers of PHAs have almost all the desirable properties, making them suitable for high-end applications such as those in the medical sector. Structural modifications in PHA molecules have expanded the scope of their applications, including in medical implants, wound healing and bone grafts. It is noteworthy that considerable progress has been made in the field of PHA nanocomposites, which are now being explored for their biotechnological applications in drug delivery, tissue engineering and biosensors. The prospects for PHA nanocomposites are also summarized. © 2025 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 5","pages":"405-414"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6742","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polyhydroxyalkanoates (PHAs) have been recognized as potential replacements for fossil fuel-based, non-biodegradable plastics. PHAs exhibit properties that are analogous to those of synthetic plastics. The production of PHAs offers a multitude of advantages, primarily due to their biodegradability and biocompatibility. The most naturally occurring form of PHAs are the polyhydroxybutyrates (P(3HB)s). The major limitations of P(3HB)s are their brittle nature and inferior mechanical properties. Hence, these biopolymers have been observed to have limited biotechnological applications. In contrast to P(3HB)s, copolymers of PHAs have almost all the desirable properties, making them suitable for high-end applications such as those in the medical sector. Structural modifications in PHA molecules have expanded the scope of their applications, including in medical implants, wound healing and bone grafts. It is noteworthy that considerable progress has been made in the field of PHA nanocomposites, which are now being explored for their biotechnological applications in drug delivery, tissue engineering and biosensors. The prospects for PHA nanocomposites are also summarized. © 2025 Society of Chemical Industry.

Abstract Image

生物医学用聚羟基烷酸酯纳米复合材料的制备
聚羟基烷酸酯(PHAs)已被认为是化石燃料基、不可生物降解塑料的潜在替代品。pha表现出与合成塑料类似的特性。pha的生产具有许多优点,主要是由于它们的生物可降解性和生物相容性。聚羟基丁酸酯(P(3HB)s)是最自然存在的形式。P(3HB)s的主要缺陷是其脆性和较差的力学性能。因此,观察到这些生物聚合物在生物技术方面的应用有限。与P(3HB)s相比,pha共聚物几乎具有所有理想的性能,使其适用于高端应用,如医疗领域。PHA分子的结构修饰扩大了其应用范围,包括医疗植入物、伤口愈合和骨移植。值得注意的是,PHA纳米复合材料的研究已经取得了长足的进展,其在药物递送、组织工程和生物传感器等方面的生物技术应用正在探索中。展望了PHA纳米复合材料的发展前景。©2025化学工业协会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信