Lingzhi Sun, Paul G. Lucey, Abigail Flom, James A. McFadden, Ryan A. Zeigler, Juliane Gross, Michelle S. Thompson, Francis M. McCubbin, Charles K. Shearer, The ANGSA Science Team
{"title":"Space weathering and compositional stratigraphy of Apollo 17 double drive tube 73001/2","authors":"Lingzhi Sun, Paul G. Lucey, Abigail Flom, James A. McFadden, Ryan A. Zeigler, Juliane Gross, Michelle S. Thompson, Francis M. McCubbin, Charles K. Shearer, The ANGSA Science Team","doi":"10.1111/maps.14332","DOIUrl":null,"url":null,"abstract":"<p>The double drive tube 73001/2 is a regolith core and was collected on the Light Mantle at Station 3 during the Apollo 17 mission. This core preserves an in situ record of space weathering and compositional stratigraphy, providing insights to the thickness of the Light Mantle and the local regolith reworking time scale. We measured the dissection passes 2–3 of core 73002 and passes 1–3 of core 73001 using a high-spatial resolution multispectral imaging system, and analyzed the space weathering products on individual soil grains from pass 2 of 73002 using transmission electron microscopy analysis. Our results indicate that the double drive tube 73001/2 contains a zone of submature to mature soil overlying a zone of immature soil. The top more mature zone is about 6–7 cm thick, corresponding to the local regolith reworking depth. On the basis of this depth, the estimated regolith reworking time scale for core 73001/2 is approximately 9–13 million years. Due to mixing with basaltic materials from the central valley, the top mature zone exhibits an FeO content 1–3 wt% higher than the underlying immature soils. Spectral images indicate that the double drive tube failed to penetrate the bottom of the Light Mantle but may have reached the edge of the landslide-valley material mixing zone. The local landslide deposit is thicker than the maximum sampling depth of the double drive tube, which is about 70 cm.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 4","pages":"849-857"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14332","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The double drive tube 73001/2 is a regolith core and was collected on the Light Mantle at Station 3 during the Apollo 17 mission. This core preserves an in situ record of space weathering and compositional stratigraphy, providing insights to the thickness of the Light Mantle and the local regolith reworking time scale. We measured the dissection passes 2–3 of core 73002 and passes 1–3 of core 73001 using a high-spatial resolution multispectral imaging system, and analyzed the space weathering products on individual soil grains from pass 2 of 73002 using transmission electron microscopy analysis. Our results indicate that the double drive tube 73001/2 contains a zone of submature to mature soil overlying a zone of immature soil. The top more mature zone is about 6–7 cm thick, corresponding to the local regolith reworking depth. On the basis of this depth, the estimated regolith reworking time scale for core 73001/2 is approximately 9–13 million years. Due to mixing with basaltic materials from the central valley, the top mature zone exhibits an FeO content 1–3 wt% higher than the underlying immature soils. Spectral images indicate that the double drive tube failed to penetrate the bottom of the Light Mantle but may have reached the edge of the landslide-valley material mixing zone. The local landslide deposit is thicker than the maximum sampling depth of the double drive tube, which is about 70 cm.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.