Accelerated Artificial Bee Colony Optimization for Cost-Sensitive Neural Networks in Multi-Class Problems

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2025-04-10 DOI:10.1111/exsy.70045
Hilal Hacilar, Bilge Kagan Dedeturk, Mihrimah Ozmen, Mehlika Eraslan Celik, Vehbi Cagri Gungor
{"title":"Accelerated Artificial Bee Colony Optimization for Cost-Sensitive Neural Networks in Multi-Class Problems","authors":"Hilal Hacilar,&nbsp;Bilge Kagan Dedeturk,&nbsp;Mihrimah Ozmen,&nbsp;Mehlika Eraslan Celik,&nbsp;Vehbi Cagri Gungor","doi":"10.1111/exsy.70045","DOIUrl":null,"url":null,"abstract":"<p>Metaheuristics are advanced problem-solving techniques that develop efficient algorithms to address complex challenges, while neural networks are algorithms inspired by the structure and function of the human brain. Combining these approaches enables the resolution of complex optimization problems that traditional methods struggle to solve. This study presents a novel approach integrating the ABC algorithm with ANNs for weight optimization. The method is further enhanced by vectorization and parallelization techniques on both CPU and GPU to improve computational efficiency. Additionally, this study introduces a cost-sensitive fitness function tailored for multi-class classification to optimize results by considering relationships between target class levels. It validates these advancements in two critical applications: network intrusion detection and earthquake damage estimation. Notably, this study makes a significant contribution to earthquake damage assessment by leveraging machine learning algorithms and metaheuristics to enhance predictive models and decision-making in disaster response. By addressing the dynamic nature of earthquake damage, this research fills a critical gap in existing models and broadens the understanding of how machine learning and metaheuristics can improve disaster response strategies. In both domains, the ABC-ANN implementation yields promising results, particularly in earthquake damage estimation, where the cost-sensitive approach demonstrates satisfactory outcomes in macro-F1 and accuracy. The best results for macro-F1, weighted-F1, and overall accuracy provides best results with the UNSW-NB15 and earthquake datasets, showing values of 64%, 72%, 68%, and 60%, 80%, and 79%, respectively. Comparative performance evaluations reveal that the proposed parallel ABC-ANN model, incorporating the novel cost-sensitive fitness function and enhanced by vectorization and parallelization techniques, significantly reduces training time and outperforms state-of-the-art methods in terms of macro-F1 and accuracy in both network intrusion detection and earthquake damage estimation.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Metaheuristics are advanced problem-solving techniques that develop efficient algorithms to address complex challenges, while neural networks are algorithms inspired by the structure and function of the human brain. Combining these approaches enables the resolution of complex optimization problems that traditional methods struggle to solve. This study presents a novel approach integrating the ABC algorithm with ANNs for weight optimization. The method is further enhanced by vectorization and parallelization techniques on both CPU and GPU to improve computational efficiency. Additionally, this study introduces a cost-sensitive fitness function tailored for multi-class classification to optimize results by considering relationships between target class levels. It validates these advancements in two critical applications: network intrusion detection and earthquake damage estimation. Notably, this study makes a significant contribution to earthquake damage assessment by leveraging machine learning algorithms and metaheuristics to enhance predictive models and decision-making in disaster response. By addressing the dynamic nature of earthquake damage, this research fills a critical gap in existing models and broadens the understanding of how machine learning and metaheuristics can improve disaster response strategies. In both domains, the ABC-ANN implementation yields promising results, particularly in earthquake damage estimation, where the cost-sensitive approach demonstrates satisfactory outcomes in macro-F1 and accuracy. The best results for macro-F1, weighted-F1, and overall accuracy provides best results with the UNSW-NB15 and earthquake datasets, showing values of 64%, 72%, 68%, and 60%, 80%, and 79%, respectively. Comparative performance evaluations reveal that the proposed parallel ABC-ANN model, incorporating the novel cost-sensitive fitness function and enhanced by vectorization and parallelization techniques, significantly reduces training time and outperforms state-of-the-art methods in terms of macro-F1 and accuracy in both network intrusion detection and earthquake damage estimation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信