Accelerated Multiobjective Calibration of Fused Deposition Modeling 3D Printers Using Multitask Bayesian Optimization and Computer Vision

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Graig S. Ganitano, Benji Maruyama, Gilbert L. Peterson
{"title":"Accelerated Multiobjective Calibration of Fused Deposition Modeling 3D Printers Using Multitask Bayesian Optimization and Computer Vision","authors":"Graig S. Ganitano,&nbsp;Benji Maruyama,&nbsp;Gilbert L. Peterson","doi":"10.1002/aisy.202400523","DOIUrl":null,"url":null,"abstract":"<p>Proper process parameter calibration is critical to the success of fused deposition modeling (FDM) three-dimensional (3D) printing, but is time-consuming and requires expertise. While existing systems for autonomous calibration have demonstrated success in calibrating for a single objective, users may need to balance multiple conflicting objectives. Herein, an easily deployable, camera-based system for autonomous calibration of FDM printers that optimizes for both part quality and completion time is presented. Autonomous calibration is achieved through a novel, multifaceted computer vision characterization and a multitask learning extension to Bayesian optimization. The system is demonstrated on four popular filament types using two distinct 3D printers. The results show that the system significantly outperforms manufacturer calibration across the machine and material configurations, achieving an average improvement of 32.2% in quality and a 31.2% decrease in completion time with respect to a popular benchmark.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400523","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Proper process parameter calibration is critical to the success of fused deposition modeling (FDM) three-dimensional (3D) printing, but is time-consuming and requires expertise. While existing systems for autonomous calibration have demonstrated success in calibrating for a single objective, users may need to balance multiple conflicting objectives. Herein, an easily deployable, camera-based system for autonomous calibration of FDM printers that optimizes for both part quality and completion time is presented. Autonomous calibration is achieved through a novel, multifaceted computer vision characterization and a multitask learning extension to Bayesian optimization. The system is demonstrated on four popular filament types using two distinct 3D printers. The results show that the system significantly outperforms manufacturer calibration across the machine and material configurations, achieving an average improvement of 32.2% in quality and a 31.2% decrease in completion time with respect to a popular benchmark.

Abstract Image

基于多任务贝叶斯优化和计算机视觉的熔融沉积建模3D打印机加速多目标标定
正确的工艺参数校准对于熔融沉积建模(FDM)三维(3D)打印的成功至关重要,但耗时且需要专业知识。虽然现有的自主校准系统已经证明可以成功地校准单个目标,但用户可能需要平衡多个相互冲突的目标。本文提出了一种易于部署的基于摄像头的FDM打印机自主校准系统,该系统可优化零件质量和完成时间。自主校准是通过一种新颖的,多方面的计算机视觉表征和多任务学习扩展到贝叶斯优化实现的。该系统使用两台不同的3D打印机在四种流行的灯丝类型上进行了演示。结果表明,该系统在机器和材料配置方面明显优于制造商校准,相对于流行的基准,质量平均提高32.2%,完成时间减少31.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信