Ludovico Musenich, Lorenzo Strozzi, Massimiliano Avalle, Flavia Libonati
{"title":"D-HAT: A Diatom-Inspired Structure for a Helmet Concept Against Trauma","authors":"Ludovico Musenich, Lorenzo Strozzi, Massimiliano Avalle, Flavia Libonati","doi":"10.1002/aisy.202400419","DOIUrl":null,"url":null,"abstract":"<p>Helmets are critical for minimizing the risk of traumatic brain injuries in road accidents and sports. Traditional designs feature a rigid outer shell and a deformable inner liner of foam for energy absorption. Recent advancements have introduced architected materials as alternatives to conventional foams, offering improved safety and multifunctionality. Herein, a diatom-inspired architected material optimized for energy absorption in helmet liners is proposed and designed for a new concept of multifunctional helmets. The material is modeled using CAD tools, its performance is evaluated through finite element analysis and quasistatic compression tests on 3D-printed elastomeric samples, and parametric optimization is applied. The results demonstrate energy absorption comparable to conventional materials, laying the groundwork for future studies on fluid-dynamic behavior and multifunctional helmet designs.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400419","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Helmets are critical for minimizing the risk of traumatic brain injuries in road accidents and sports. Traditional designs feature a rigid outer shell and a deformable inner liner of foam for energy absorption. Recent advancements have introduced architected materials as alternatives to conventional foams, offering improved safety and multifunctionality. Herein, a diatom-inspired architected material optimized for energy absorption in helmet liners is proposed and designed for a new concept of multifunctional helmets. The material is modeled using CAD tools, its performance is evaluated through finite element analysis and quasistatic compression tests on 3D-printed elastomeric samples, and parametric optimization is applied. The results demonstrate energy absorption comparable to conventional materials, laying the groundwork for future studies on fluid-dynamic behavior and multifunctional helmet designs.