Log-BMO matrix weights and quasilinear elliptic equations with Orlicz growth in Reifenberg domains

IF 1 2区 数学 Q1 MATHEMATICS
Sun-Sig Byun, Rui Yang
{"title":"Log-BMO matrix weights and quasilinear elliptic equations with Orlicz growth in Reifenberg domains","authors":"Sun-Sig Byun,&nbsp;Rui Yang","doi":"10.1112/jlms.70151","DOIUrl":null,"url":null,"abstract":"<p>We study a very general quasilinear elliptic equation with the nonlinearity with Orlicz growth subject to a degenerate or singular matrix weight on a bounded nonsmooth domain. The nonlinearity satisfies a nonstandard growth condition related to the associated Young function, and the logarithm of the matrix weight in BMO (bounded mean oscillation) is constrained by a smallness parameter which has a close relationship with the Young function. We establish a global Calderón–Zygmund estimate for the weak solution of such a degenerate or singular problem in the setting of a weighted Orlicz space under a minimal geometric assumption that the boundary of the domain is sufficiently flat in the Reifenberg sense. Our regularity result is, up to our knowledge, the first one available for divergence structure quasilinear elliptic equations with matrix weights and nonstandard growth in the literature.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70151","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a very general quasilinear elliptic equation with the nonlinearity with Orlicz growth subject to a degenerate or singular matrix weight on a bounded nonsmooth domain. The nonlinearity satisfies a nonstandard growth condition related to the associated Young function, and the logarithm of the matrix weight in BMO (bounded mean oscillation) is constrained by a smallness parameter which has a close relationship with the Young function. We establish a global Calderón–Zygmund estimate for the weak solution of such a degenerate or singular problem in the setting of a weighted Orlicz space under a minimal geometric assumption that the boundary of the domain is sufficiently flat in the Reifenberg sense. Our regularity result is, up to our knowledge, the first one available for divergence structure quasilinear elliptic equations with matrix weights and nonstandard growth in the literature.

Reifenberg域上具有Orlicz增长的Log-BMO矩阵权和拟线性椭圆方程
研究了一类极一般的拟线性椭圆方程,该方程具有Orlicz生长的非线性,在有界非光滑域上具有退化矩阵权值或奇异矩阵权值。非线性满足与Young函数相关的非标准生长条件,并且BMO(有界平均振荡)中矩阵权值的对数受一个与Young函数关系密切的小参数的约束。在最小几何假设域边界在Reifenberg意义上足够平坦的情况下,我们建立了加权Orlicz空间中这类退化或奇异问题弱解的全局Calderón-Zygmund估计。我们的正则性结果,据我们所知,是文献中第一个得到的具有矩阵权值和非标准增长的散度结构拟线性椭圆方程的正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信