Marked length spectrum rigidity in groups with contracting elements

IF 1 2区 数学 Q1 MATHEMATICS
Renxing Wan, Xiaoyu Xu, Wenyuan Yang
{"title":"Marked length spectrum rigidity in groups with contracting elements","authors":"Renxing Wan,&nbsp;Xiaoyu Xu,&nbsp;Wenyuan Yang","doi":"10.1112/jlms.70146","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a study of the well-known marked length spectrum rigidity problem in the coarse-geometric setting. For any two (possibly non-proper) group actions <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mi>↷</mi>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$G\\curvearrowright X_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mi>↷</mi>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$G\\curvearrowright X_2$</annotation>\n </semantics></math> with contracting property, we prove that if the two actions have the same marked length spectrum, then the orbit map <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <msub>\n <mi>o</mi>\n <mn>1</mn>\n </msub>\n <mo>→</mo>\n <mi>G</mi>\n <msub>\n <mi>o</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$Go_1\\rightarrow Go_2$</annotation>\n </semantics></math> must be a rough isometry. In the special case of cusp-uniform actions, the rough isometry can be extended to the entire space. This generalises the existing results in hyperbolic groups and relatively hyperbolic groups. In addition, we prove a finer marked length spectrum rigidity from confined subgroups and further, geometrically dense subgroups. Our proof is based on the Extension Lemma and uses purely elementary metric geometry. This study produces new results and recovers existing ones for many more interesting groups through a unified and elementary approach.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70146","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study of the well-known marked length spectrum rigidity problem in the coarse-geometric setting. For any two (possibly non-proper) group actions G X 1 $G\curvearrowright X_1$ and G X 2 $G\curvearrowright X_2$ with contracting property, we prove that if the two actions have the same marked length spectrum, then the orbit map G o 1 G o 2 $Go_1\rightarrow Go_2$ must be a rough isometry. In the special case of cusp-uniform actions, the rough isometry can be extended to the entire space. This generalises the existing results in hyperbolic groups and relatively hyperbolic groups. In addition, we prove a finer marked length spectrum rigidity from confined subgroups and further, geometrically dense subgroups. Our proof is based on the Extension Lemma and uses purely elementary metric geometry. This study produces new results and recovers existing ones for many more interesting groups through a unified and elementary approach.

在具有收缩元素的群中有明显的长度谱刚性
本文研究了在粗糙几何条件下著名的标记长度谱刚性问题。对于任意两个(可能是非固有的)群作用G↷X 1$ G\curvearrowright X_1$和G↷X 2$ G\curvearrowright X_2$具有收缩性质,我们证明了如果这两个作用具有相同的标记长度谱,那么轨道图g1→g2 $Go_1\右列Go_2$一定是粗糙等距的。在尖均匀作用的特殊情况下,粗糙等距可以推广到整个空间。这推广了双曲群和相对双曲群中已有的结果。此外,我们还证明了从受限子群和进一步的几何密集子群中得到的更精细的标记长度谱刚性。我们的证明是基于引理和使用纯初等度量几何。本研究通过统一和基本的方法为更多有趣的群体产生了新的结果,并恢复了现有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信