Quantitative expansivity for ergodic Z d $\mathbb {Z}^d$ -actions

IF 1 2区 数学 Q1 MATHEMATICS
Alexander Fish, Sean Skinner
{"title":"Quantitative expansivity for ergodic \n \n \n Z\n d\n \n $\\mathbb {Z}^d$\n -actions","authors":"Alexander Fish,&nbsp;Sean Skinner","doi":"10.1112/jlms.70154","DOIUrl":null,"url":null,"abstract":"<p>We study expansiveness properties of positive measure subsets of ergodic <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math>-actions along two different types of structured subsets of <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math>, namely, cyclic subgroups and images of integer polynomials. We prove quantitative expansiveness properties in both cases, strengthening combinatorial results from two distinct works—one by Björklund and Fish, the other by Bulinski and Fish. Our methods unify and strengthen earlier approaches used in Björklund and Fish and Bulinski and Fish and to our surprise, also yield a counterexample to a certain pinned variant of the polynomial Bogolyubov theorem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70154","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70154","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study expansiveness properties of positive measure subsets of ergodic Z d $\mathbb {Z}^d$ -actions along two different types of structured subsets of Z d $\mathbb {Z}^d$ , namely, cyclic subgroups and images of integer polynomials. We prove quantitative expansiveness properties in both cases, strengthening combinatorial results from two distinct works—one by Björklund and Fish, the other by Bulinski and Fish. Our methods unify and strengthen earlier approaches used in Björklund and Fish and Bulinski and Fish and to our surprise, also yield a counterexample to a certain pinned variant of the polynomial Bogolyubov theorem.

遍历Z d$ \mathbb {Z}^d$ -动作的数量扩展性
研究了遍历Z d$ \mathbb {Z}^d$ -作用的正测度子集沿Z d$ \mathbb {Z}^d$的两种不同类型的结构化子集即整数多项式的循环子群和象的可扩展性。我们证明了这两种情况下的定量扩张性,加强了两个不同工作的组合结果-一个是Björklund和Fish,另一个是Bulinski和Fish。我们的方法统一并加强了Björklund、Fish、Bulinski和Fish中使用的早期方法,并且令我们惊讶的是,我们还得出了多项式Bogolyubov定理的某个固定变体的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信