On a common refinement of Stark units and Gross–Stark units

IF 1 2区 数学 Q1 MATHEMATICS
Tomokazu Kashio
{"title":"On a common refinement of Stark units and Gross–Stark units","authors":"Tomokazu Kashio","doi":"10.1112/jlms.70147","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to formulate and study a common refinement of a version of Stark's conjecture and its <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic analogue, in terms of Fontaine's <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic period ring. We construct period-ring-valued functions under a generalization of Yoshida's conjecture on the transcendental parts of CM-periods. Then, we formulate a conjecture on the reciprocity law on their special values concerning the absolute Frobenius action. We show that our conjecture implies a part of Stark's conjecture when the base field is an arbitrary real field and the splitting place is a real place. It also implies a refinement of the Gross–Stark conjecture under a certain assumption. When the base field is the rational number field, we see that our conjecture follows from Coleman's formula on Fermat curves. We also provide some partial results in other cases.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70147","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to formulate and study a common refinement of a version of Stark's conjecture and its p $p$ -adic analogue, in terms of Fontaine's p $p$ -adic period ring. We construct period-ring-valued functions under a generalization of Yoshida's conjecture on the transcendental parts of CM-periods. Then, we formulate a conjecture on the reciprocity law on their special values concerning the absolute Frobenius action. We show that our conjecture implies a part of Stark's conjecture when the base field is an arbitrary real field and the splitting place is a real place. It also implies a refinement of the Gross–Stark conjecture under a certain assumption. When the base field is the rational number field, we see that our conjecture follows from Coleman's formula on Fermat curves. We also provide some partial results in other cases.

Stark单位和Gross-Stark单位的共同细化
本文的目的是在Fontaine的p$ p$ -adic周期环上,对Stark猜想及其p$ p$ -adic类比的一种常见改进形式进行表述和研究。推广吉田关于cm周期的超越部分的猜想,构造了周期-环值函数。然后,我们对它们在绝对弗罗本纽斯作用下的特殊值的互易律进行了推测。我们证明了当基场是任意实场且分裂位是实位时,我们的猜想包含了Stark猜想的一部分。它还暗示了格罗斯-斯塔克猜想在一定假设下的改进。当基场为有理数场时,我们的猜想可以由费马曲线上的Coleman公式推导出来。在其他情况下,我们也提供了部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信