Assistance of Artificial Intelligence in Diagnosis of Vitreoretinal Lymphoma on Optical Coherence Tomography

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Aidi Lin, Yuanyuan Peng, Tian Lin, Jun Dai, Jizhu Li, Tingkun Shi, Xixuan Ke, Xulong Liao, Danqi Fang, Man Chen, Huiyu Liang, Shirong Chen, Honghe Xia, Jingtao Wang, Zehua Jiang, Tao Li, Dan Liang, Shanshan Yu, Jing Luo, Ling Gao, Dawei Sun, Yih Chung Tham, Xinjian Chen, Haoyu Chen
{"title":"Assistance of Artificial Intelligence in Diagnosis of Vitreoretinal Lymphoma on Optical Coherence Tomography","authors":"Aidi Lin,&nbsp;Yuanyuan Peng,&nbsp;Tian Lin,&nbsp;Jun Dai,&nbsp;Jizhu Li,&nbsp;Tingkun Shi,&nbsp;Xixuan Ke,&nbsp;Xulong Liao,&nbsp;Danqi Fang,&nbsp;Man Chen,&nbsp;Huiyu Liang,&nbsp;Shirong Chen,&nbsp;Honghe Xia,&nbsp;Jingtao Wang,&nbsp;Zehua Jiang,&nbsp;Tao Li,&nbsp;Dan Liang,&nbsp;Shanshan Yu,&nbsp;Jing Luo,&nbsp;Ling Gao,&nbsp;Dawei Sun,&nbsp;Yih Chung Tham,&nbsp;Xinjian Chen,&nbsp;Haoyu Chen","doi":"10.1002/aisy.202570018","DOIUrl":null,"url":null,"abstract":"<p><b>Automatic Diagnosis of Vitreoretinal Lymphoma</b>\n </p><p>Vitreoretinal lymphoma (VRL) is a rare disease that presents significant challenges for both clinical diagnosis and the training of artificial intelligence (AI) model. Haoyu Chen, Xinjian Chen, and co-workers have developed a pioneering AI model capable of detecting VRL from optical coherence tomography (OCT) images. This model leverages knowledge from common diseases to rare ones, overcoming the obstacle of limited training data. This innovative approach to VRL diagnosis holds the potential to minimize diagnostic delays and expedite the initiation of appropriate treatments. More details can be found in article number 2400500.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic Diagnosis of Vitreoretinal Lymphoma

Vitreoretinal lymphoma (VRL) is a rare disease that presents significant challenges for both clinical diagnosis and the training of artificial intelligence (AI) model. Haoyu Chen, Xinjian Chen, and co-workers have developed a pioneering AI model capable of detecting VRL from optical coherence tomography (OCT) images. This model leverages knowledge from common diseases to rare ones, overcoming the obstacle of limited training data. This innovative approach to VRL diagnosis holds the potential to minimize diagnostic delays and expedite the initiation of appropriate treatments. More details can be found in article number 2400500.

Abstract Image

人工智能在光学相干断层成像诊断玻璃体视网膜淋巴瘤中的辅助作用
玻璃体视网膜淋巴瘤(VRL)是一种罕见的疾病,对临床诊断和人工智能(AI)模型的训练都提出了重大挑战。陈浩宇、陈新建及其同事开发了一种开创性的人工智能模型,能够从光学相干断层扫描(OCT)图像中检测VRL。该模型利用了从常见病到罕见病的知识,克服了训练数据有限的障碍。这种创新性的VRL诊断方法有可能最大限度地减少诊断延误并加快适当治疗的启动。更多细节见第2400500条。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信