Design and Control of Dual-Body Negative Pressure Ground-Wall Transition Robot

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Huan Shen, Kai Cao, Jiajun Xu, Wenjun Yan, Xuefei Liu, Huan Wang, Youfu Li, Linsen Xu, Aihong Ji
{"title":"Design and Control of Dual-Body Negative Pressure Ground-Wall Transition Robot","authors":"Huan Shen,&nbsp;Kai Cao,&nbsp;Jiajun Xu,&nbsp;Wenjun Yan,&nbsp;Xuefei Liu,&nbsp;Huan Wang,&nbsp;Youfu Li,&nbsp;Linsen Xu,&nbsp;Aihong Ji","doi":"10.1002/aisy.202400467","DOIUrl":null,"url":null,"abstract":"<p>This article presents a novel dual-body negative-pressure ground-wall transition robot (DNPTR) aimed at expanding the application scenarios of climbing robots to meet the functional requirements of obstacle traversal and wall transition in high-altitude operations. As a typical representative of highly nonlinear and multivariable strongly coupled systems, the wall transition actions of the DNPTR are analyzed and planned based on the mechanical structure characteristics. Subsequently, unified kinematic and dynamic models of the bipedal negative-pressure climbing robot are established. To improve the automation and ensure safe, efficient operation of climbing robots, effective trajectory tracking control for the DNPTR is crucial. Addressing challenges such as model parameter uncertainties and external disturbances, this study proposes an adaptive trajectory tracking control method based on a radial basis function neural network. The method integrates a boundary layer with an improved exponential reaching law, forming a non-singular terminal sliding mode control strategy. Using Lyapunov theory, the global asymptotic stability of the system is verified. Both simulation and experimental results demonstrate that this approach achieves faster convergence and effectively suppresses oscillations during trajectory tracking. This research is of practical importance, offering valuable guidance for the design of high-accuracy, robust trajectory-tracking controllers for dual-body climbing robots.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400467","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel dual-body negative-pressure ground-wall transition robot (DNPTR) aimed at expanding the application scenarios of climbing robots to meet the functional requirements of obstacle traversal and wall transition in high-altitude operations. As a typical representative of highly nonlinear and multivariable strongly coupled systems, the wall transition actions of the DNPTR are analyzed and planned based on the mechanical structure characteristics. Subsequently, unified kinematic and dynamic models of the bipedal negative-pressure climbing robot are established. To improve the automation and ensure safe, efficient operation of climbing robots, effective trajectory tracking control for the DNPTR is crucial. Addressing challenges such as model parameter uncertainties and external disturbances, this study proposes an adaptive trajectory tracking control method based on a radial basis function neural network. The method integrates a boundary layer with an improved exponential reaching law, forming a non-singular terminal sliding mode control strategy. Using Lyapunov theory, the global asymptotic stability of the system is verified. Both simulation and experimental results demonstrate that this approach achieves faster convergence and effectively suppresses oscillations during trajectory tracking. This research is of practical importance, offering valuable guidance for the design of high-accuracy, robust trajectory-tracking controllers for dual-body climbing robots.

Abstract Image

双体负压地墙过渡机器人的设计与控制
本文提出了一种新型的双体负压地墙过渡机器人(DNPTR),旨在拓展攀爬机器人的应用场景,以满足高空作业中障碍物穿越和墙过渡的功能需求。DNPTR作为高度非线性、多变量强耦合系统的典型代表,根据其力学结构特点对其壁面过渡行为进行了分析和规划。随后,建立了双足负压攀爬机器人的统一运动学和动力学模型。为了提高攀爬机器人的自动化程度,确保其安全、高效地运行,对DNPTR进行有效的轨迹跟踪控制至关重要。针对模型参数不确定性和外界干扰等问题,提出了一种基于径向基函数神经网络的自适应轨迹跟踪控制方法。该方法将边界层与改进的指数趋近律相结合,形成了一种非奇异终端滑模控制策略。利用李雅普诺夫理论,验证了系统的全局渐近稳定性。仿真和实验结果表明,该方法具有较快的收敛速度,并能有效抑制轨迹跟踪过程中的振荡。该研究对设计高精度、鲁棒的双体攀爬机器人轨迹跟踪控制器具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信