A Heterotic Hermitian–Yang–Mills Equivalence

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jock McOrist, Sebastien Picard, Eirik Eik Svanes
{"title":"A Heterotic Hermitian–Yang–Mills Equivalence","authors":"Jock McOrist,&nbsp;Sebastien Picard,&nbsp;Eirik Eik Svanes","doi":"10.1007/s00220-025-05272-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider <span>\\(N=1\\)</span>, <span>\\(d=4\\)</span> vacua of heterotic theories in the large radius limit in which <span>\\({{\\alpha }^{\\backprime }\\,}\\ll 1\\)</span>. We construct a real differential operator <span>\\(\\mathcal {D}= D+\\bar{D}\\)</span> on an extension bundle <span>\\((Q, \\mathcal {D})\\)</span> with underlying topology <span>\\(Q=(T^{1,0}X)^* \\oplus \\textrm{End} \\, E \\oplus T^{1,0} X\\)</span> whose curvature is holomorphic and Hermitian–Yang–Mills with respect to the complex structure and metric on the underlying non-Kähler complex 3-fold <i>X</i> if and only if the heterotic supersymmetry equations and Bianchi identity are satisfied. This is suggestive of an analogue of the Donaldson–Uhlenbeck–Yau correspondence for heterotic vacua of this type.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05272-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05272-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider \(N=1\), \(d=4\) vacua of heterotic theories in the large radius limit in which \({{\alpha }^{\backprime }\,}\ll 1\). We construct a real differential operator \(\mathcal {D}= D+\bar{D}\) on an extension bundle \((Q, \mathcal {D})\) with underlying topology \(Q=(T^{1,0}X)^* \oplus \textrm{End} \, E \oplus T^{1,0} X\) whose curvature is holomorphic and Hermitian–Yang–Mills with respect to the complex structure and metric on the underlying non-Kähler complex 3-fold X if and only if the heterotic supersymmetry equations and Bianchi identity are satisfied. This is suggestive of an analogue of the Donaldson–Uhlenbeck–Yau correspondence for heterotic vacua of this type.

异质性Hermitian-Yang-Mills等价
我们考虑\(N=1\)、\(d=4\)异质理论在大半径极限下的真空,其中\({{\alpha }^{\backprime }\,}\ll 1\)。当且仅当杂散超对称方程和Bianchi恒等式满足时,我们在具有底层拓扑\(Q=(T^{1,0}X)^* \oplus \textrm{End} \, E \oplus T^{1,0} X\)的扩展束\((Q, \mathcal {D})\)上构造了一个实微分算子\(\mathcal {D}= D+\bar{D}\),该扩展束对于底层non-Kähler复3重X的复结构和度规是全纯和Hermitian-Yang-Mills的。这暗示了这种类型的杂种真空的Donaldson-Uhlenbeck-Yau对应的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信