Preparation and Properties of Multiblock Polyester Synthesized by Chain Extension Copolymerization of poly(L-lactic acid) and poly(Butylene Carbonate) Prepolymer

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Shaozhe Yang, Rong Wu, Wei Bai, Qingyin Wang, Jianguo Li, Gongying Wang
{"title":"Preparation and Properties of Multiblock Polyester Synthesized by Chain Extension Copolymerization of poly(L-lactic acid) and poly(Butylene Carbonate) Prepolymer","authors":"Shaozhe Yang,&nbsp;Rong Wu,&nbsp;Wei Bai,&nbsp;Qingyin Wang,&nbsp;Jianguo Li,&nbsp;Gongying Wang","doi":"10.1007/s10924-025-03517-4","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroxyl-terminated poly(L-lactic acid) (PLLA-OH) and poly(butylene carbonate) prepolymer (PBC-OH) were synthesized via ring-opening(ROP) polymerization of lactide and ester exchange polymerization of dimethyl carbonate (DMC) and 1,4-butanediol (BDO), respectively. Subsequently, a chain extension reaction was conducted using diisocyanate as a chain extender to produce a biodegradable multiblock copolymer ester PLLA-PBC. The structural characteristics and molecular weight of PLLA-PBC with different block lengths and mass fractions were analyzed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (<sup>1</sup>H-NMR) and gel permeation chromatography (GPC). The impact of PLLA-PBC’s structure on its properties was examined through various characterization techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and tensile testing. The DSC findings revealed that the glass transition temperature of the multiblock copolyester lies between those of PLLA-OH and PBC-OH, with variations in component content leading to a reduction in crystallinity. In addition, tensile tests showed that the addition of PBC segments significantly increased the elongation at break of PLLA.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2267 - 2279"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03517-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxyl-terminated poly(L-lactic acid) (PLLA-OH) and poly(butylene carbonate) prepolymer (PBC-OH) were synthesized via ring-opening(ROP) polymerization of lactide and ester exchange polymerization of dimethyl carbonate (DMC) and 1,4-butanediol (BDO), respectively. Subsequently, a chain extension reaction was conducted using diisocyanate as a chain extender to produce a biodegradable multiblock copolymer ester PLLA-PBC. The structural characteristics and molecular weight of PLLA-PBC with different block lengths and mass fractions were analyzed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). The impact of PLLA-PBC’s structure on its properties was examined through various characterization techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and tensile testing. The DSC findings revealed that the glass transition temperature of the multiblock copolyester lies between those of PLLA-OH and PBC-OH, with variations in component content leading to a reduction in crystallinity. In addition, tensile tests showed that the addition of PBC segments significantly increased the elongation at break of PLLA.

聚l -乳酸与聚碳酸丁烯预聚物扩链共聚合成多嵌段聚酯的制备及性能
采用丙交酯开环(ROP)聚合、碳酸二甲酯(DMC)和1,4-丁二醇(BDO)酯交换聚合,分别合成了端羟基聚l-乳酸(PLLA-OH)和聚碳酸丁二醇预聚物(PBC-OH)。随后,以二异氰酸酯为扩链剂进行扩链反应,制得可生物降解的多嵌段共聚物酯pla - pbc。采用傅里叶变换红外光谱(FTIR)、核磁共振(1H-NMR)和凝胶渗透色谱(GPC)分析了不同块长和质量分数的pla - pbc的结构特征和分子量。通过各种表征技术,包括差示扫描量热法(DSC)、热重分析(TGA)、x射线衍射(XRD)和拉伸测试,研究了pla - pbc的结构对其性能的影响。DSC结果表明,多嵌段共聚酯的玻璃化转变温度介于PLLA-OH和PBC-OH之间,组分含量的变化导致结晶度的降低。此外,拉伸试验表明,PBC片段的加入显著提高了PLLA的断裂伸长率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信