{"title":"Occurrence and Risk Assessment of Microplastics Pollution in the World’s Longest Natural Beach, Cox’s Bazar, Bangladesh","authors":"Tariqul Islam, Hefa Cheng","doi":"10.1007/s11270-025-07978-0","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) are omnipresent in all ecosystems, and sediments are considered as their ultimate sink in marine environment. This study focused on the occurrence, characteristics, and risk of MPs in the beach sediments of Cox’s Bazar, Bangladesh. Sediment samples were collected from a total of 17 sites from four study areas hosting various types of aquacultural, agricultural, animal agricultural, and tourism activities during the peak tourist season. Stereomicroscopy, micro-Fourier transform infrared spectroscopy (μ-FTIR), and scanning electron microscopy (SEM) were used for qualitative and quantitative characterization of MPs. MPs were detected in all beach sediment samples, with abundance ranging from 280 to 1060 items/kg. Overall, small sizes (< 250 μm), fibrous and granular shapes, white and transparent color were the major characteristics for MPs in the beach sediments. The dominant polymer types for the MPs were PP (24.89%), LDPE (21.85%), and HDPE (18.06%). The risk of MPs in the beach sediments was quantitatively assessed with the pollution load index (PLI, 1.0–3.78), polymeric hazard index (PHI, 49.5–70.0), and ecological risk index (ERI, 54.3–232). MPs in the sediments of Kolatoli sea beach had the highest average PLI (2.32), which is indicative of significant pollution, while those in the sediments of Darianagar beach point had the lowest average PLI (1.07). The average PHI values of MPs in the four study areas (57.2 to 63.4) were within the medium range, while the average ERI values (61.1 to 135) were indicative of low to medium ecological risk. While the ecological risk of MPs in the beach sediments of Cox’s Bazar is relatively low due to the dominance of polymers with low risk scores, efforts devoted to the management of plastic waste should be made to prevent further accumulation of MPs.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07978-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are omnipresent in all ecosystems, and sediments are considered as their ultimate sink in marine environment. This study focused on the occurrence, characteristics, and risk of MPs in the beach sediments of Cox’s Bazar, Bangladesh. Sediment samples were collected from a total of 17 sites from four study areas hosting various types of aquacultural, agricultural, animal agricultural, and tourism activities during the peak tourist season. Stereomicroscopy, micro-Fourier transform infrared spectroscopy (μ-FTIR), and scanning electron microscopy (SEM) were used for qualitative and quantitative characterization of MPs. MPs were detected in all beach sediment samples, with abundance ranging from 280 to 1060 items/kg. Overall, small sizes (< 250 μm), fibrous and granular shapes, white and transparent color were the major characteristics for MPs in the beach sediments. The dominant polymer types for the MPs were PP (24.89%), LDPE (21.85%), and HDPE (18.06%). The risk of MPs in the beach sediments was quantitatively assessed with the pollution load index (PLI, 1.0–3.78), polymeric hazard index (PHI, 49.5–70.0), and ecological risk index (ERI, 54.3–232). MPs in the sediments of Kolatoli sea beach had the highest average PLI (2.32), which is indicative of significant pollution, while those in the sediments of Darianagar beach point had the lowest average PLI (1.07). The average PHI values of MPs in the four study areas (57.2 to 63.4) were within the medium range, while the average ERI values (61.1 to 135) were indicative of low to medium ecological risk. While the ecological risk of MPs in the beach sediments of Cox’s Bazar is relatively low due to the dominance of polymers with low risk scores, efforts devoted to the management of plastic waste should be made to prevent further accumulation of MPs.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.