Bending and vibration analyses of graphene-reinforced functionally graded composite curved nanobeam with high-order surface effects

IF 2.3 3区 工程技术 Q2 MECHANICS
Y. Fang, Y. Y. Wang, Y. Q. Zhang
{"title":"Bending and vibration analyses of graphene-reinforced functionally graded composite curved nanobeam with high-order surface effects","authors":"Y. Fang,&nbsp;Y. Y. Wang,&nbsp;Y. Q. Zhang","doi":"10.1007/s00707-025-04287-9","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the nonlocal strain gradient theory and high-order surface stress model, the mechanical properties on bending and vibration of functionally graded graphene-reinforced composite curved nanobeam are investigated. The general governing equations for the dynamic behavior of curved nanobeam are formulated. The Halpin–Tsai model and the mixture rule are utilized to estimate the effective Young’s modulus and Poisson’s ratio of composite curved beams. The influences of graphene mass fraction, graphene sheet distribution type, beam radian, and high-order surface effect on the mechanical properties of bending and vibration of curved beam are analyzed. In addition, the dependences of the beam deflection, axial displacement and rotation degree in the process of beam vibration on the width-to-thickness ratio and aspect ratio of graphene sheet are discussed. The rationality and applicability of the present model are validated. It is demonstrated that the graphene sheets, the beam radian, and the high-order surface effects on the bending and vibrational properties of curved beam are significant.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 4","pages":"2425 - 2444"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04287-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the nonlocal strain gradient theory and high-order surface stress model, the mechanical properties on bending and vibration of functionally graded graphene-reinforced composite curved nanobeam are investigated. The general governing equations for the dynamic behavior of curved nanobeam are formulated. The Halpin–Tsai model and the mixture rule are utilized to estimate the effective Young’s modulus and Poisson’s ratio of composite curved beams. The influences of graphene mass fraction, graphene sheet distribution type, beam radian, and high-order surface effect on the mechanical properties of bending and vibration of curved beam are analyzed. In addition, the dependences of the beam deflection, axial displacement and rotation degree in the process of beam vibration on the width-to-thickness ratio and aspect ratio of graphene sheet are discussed. The rationality and applicability of the present model are validated. It is demonstrated that the graphene sheets, the beam radian, and the high-order surface effects on the bending and vibrational properties of curved beam are significant.

Abstract Image

具有高阶表面效应的石墨烯增强功能分级复合曲面纳米梁的弯曲和振动分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信