L-Arginine-Functionalized Chitosan/Poly(Vinylpyrrolidone) Composite as a Novel Adsorbent for Efficient Removal of Hg (II) and Amoxicillin from Aqueous Medium

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Mojtaba Azizi, Mahdi Akhgari, Maryam Esmkhani, Hossein Ghafuri, Shahrzad Javanshir
{"title":"L-Arginine-Functionalized Chitosan/Poly(Vinylpyrrolidone) Composite as a Novel Adsorbent for Efficient Removal of Hg (II) and Amoxicillin from Aqueous Medium","authors":"Mojtaba Azizi,&nbsp;Mahdi Akhgari,&nbsp;Maryam Esmkhani,&nbsp;Hossein Ghafuri,&nbsp;Shahrzad Javanshir","doi":"10.1007/s10924-025-03529-0","DOIUrl":null,"url":null,"abstract":"<div><p>Biobased adsorbents such as chitosan due to nontoxic nature, biocompatibility, and accessibility can be used to blend with other polymers to develop their physical and chemical features. This study aims to fabricate a highly efficient adsorbent through the functionalization of Chitosan- Poly(Vinylpyrrolidone) (PVP) beads with l-arginine. The prepared nano-sorbent was well characterized via various analytical methods such as FTIR, BET, EDS, XRD, FESEM, and TGA and applied in the removal of amoxicillin and Hg (II). The optimal conditions for higher performance were assessed with the optimization of different factors including pH, dosage, time, and initial concentration for both pollutants. The prepared composite has demonstrated considerable adsorption capacity toward Hg(II) and amoxicillin with the highest adsorption capacities of 313.162 mg/g and 2800 mg/g, respectively, confirming the composite’s various adsorption mechanisms. Accordingly, the composite mostly follows the pseudo-second-order kinetics and the Langmuir adsorption isotherm model. The extraordinary adsorption capacity with the accompaniment of the porous structure of the prepared composite has a promising application for high-performance wastewater treatment.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2537 - 2551"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03529-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biobased adsorbents such as chitosan due to nontoxic nature, biocompatibility, and accessibility can be used to blend with other polymers to develop their physical and chemical features. This study aims to fabricate a highly efficient adsorbent through the functionalization of Chitosan- Poly(Vinylpyrrolidone) (PVP) beads with l-arginine. The prepared nano-sorbent was well characterized via various analytical methods such as FTIR, BET, EDS, XRD, FESEM, and TGA and applied in the removal of amoxicillin and Hg (II). The optimal conditions for higher performance were assessed with the optimization of different factors including pH, dosage, time, and initial concentration for both pollutants. The prepared composite has demonstrated considerable adsorption capacity toward Hg(II) and amoxicillin with the highest adsorption capacities of 313.162 mg/g and 2800 mg/g, respectively, confirming the composite’s various adsorption mechanisms. Accordingly, the composite mostly follows the pseudo-second-order kinetics and the Langmuir adsorption isotherm model. The extraordinary adsorption capacity with the accompaniment of the porous structure of the prepared composite has a promising application for high-performance wastewater treatment.

Graphical abstract

L-精氨酸官能化壳聚糖/聚乙烯吡咯烷酮复合材料作为新型吸附剂从水介质中高效去除汞 (II) 和阿莫西林
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信