Group Invariance Method for Spherical Shock Wave in a Non-Ideal Gas under the Influence of Gravitational and Azimuthal Magnetic Fields

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
G. Nath, Abhay Maurya
{"title":"Group Invariance Method for Spherical Shock Wave in a Non-Ideal Gas under the Influence of Gravitational and Azimuthal Magnetic Fields","authors":"G. Nath,&nbsp;Abhay Maurya","doi":"10.1007/s40010-025-00908-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, we have applied the group invariance method to discuss the propagation of spherical shock wave using the concept of Roche model in a non-ideal gas under the influence of gravitational and magnetic fields for the adiabatic and isothermal flows. We have obtained the similarity solution with power law shock paths in both the ideal gas and non-ideal gas cases by the different choice of the arbitrary constant values appearing in the expression for infinitesimals. Numerical solutions are obtained for both the isothermal and adiabatic flows. The effect of the gravitational parameter, shock Cowling number, non-idealness parameter and adiabatic index on the shock strength, the density ratio across the shock front, and on the flow variables are studied. It is found that an increase in the gravitational parameter or non-idealness parameter or shock Cowling number or adiabatic index increases the density ratio across the shock front and decreases the shock strength.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"95 1","pages":"85 - 102"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-025-00908-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we have applied the group invariance method to discuss the propagation of spherical shock wave using the concept of Roche model in a non-ideal gas under the influence of gravitational and magnetic fields for the adiabatic and isothermal flows. We have obtained the similarity solution with power law shock paths in both the ideal gas and non-ideal gas cases by the different choice of the arbitrary constant values appearing in the expression for infinitesimals. Numerical solutions are obtained for both the isothermal and adiabatic flows. The effect of the gravitational parameter, shock Cowling number, non-idealness parameter and adiabatic index on the shock strength, the density ratio across the shock front, and on the flow variables are studied. It is found that an increase in the gravitational parameter or non-idealness parameter or shock Cowling number or adiabatic index increases the density ratio across the shock front and decreases the shock strength.

Abstract Image

重力和方位磁场影响下非理想气体中球形激波的群不变性方法
本文应用群不变性方法,利用罗氏模型的概念,讨论了非理想气体中绝热流和等温流在引力场和磁场作用下的球形激波传播问题。通过对无穷小量表达式中出现的任意常数值的不同选择,得到了理想气体和非理想气体情况下幂律激波路径的相似解。得到了等温流动和绝热流动的数值解。研究了重力参数、激波罩数、非理想参数和绝热指数对激波强度、激波前密度比和流动参数的影响。结果表明,重力参数、非理想参数、激波围流数或绝热指数的增大会增大激波前缘的密度比,降低激波强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信