Strigolactone decreases ethylene biosynthesis in etiolated rice seedlings by reducing expression of OsACO genes

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Gi Jun Mun, Jin Su Kim, Chan Hyeok Lee, Han Yong Lee
{"title":"Strigolactone decreases ethylene biosynthesis in etiolated rice seedlings by reducing expression of OsACO genes","authors":"Gi Jun Mun,&nbsp;Jin Su Kim,&nbsp;Chan Hyeok Lee,&nbsp;Han Yong Lee","doi":"10.1186/s13765-025-00990-2","DOIUrl":null,"url":null,"abstract":"<div><p>In plants, developmental or environmental stresses activate a suite of different phytohormones that trigger biochemical and/or morphological adaptations. The gaseous phytohormone ethylene has a major effect on the plant life cycle from germination onward. Ethylene biosynthesis is tightly regulated by external and internal cues. In etiolated seedlings of Arabidopsis and rice, various phytohormones affect ethylene biosynthesis through transcriptional and/or post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid (ACC), ACC synthases (ACS), and ACC oxidases (ACO). This study showed strigolactone also affected ethylene biosynthesis in dark-grown rice seedlings. Strigolactone treatment altered levels of <i>S-ADENOSYLMETHIONINE SYNTHASES</i> (OsSAMSs) and <i>ACC SYNTHASES</i> (OsACSs) transcripts, which encode enzymes involved in the initial steps of ethylene biosynthesis. The application of strigolactone reduced ethylene production, however, by decreasing transcription of <i>OsACO</i> genes, thus negatively affecting the final step of ethylene biosynthesis. In addition, treatment with strigolactone resulted in a phenotype in which the coleoptiles of dark-grown rice seedlings were shortened, contrary to treatment with ACC. These results reveal the tight correlation between strigolactone and ethylene biosynthesis.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00990-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-025-00990-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In plants, developmental or environmental stresses activate a suite of different phytohormones that trigger biochemical and/or morphological adaptations. The gaseous phytohormone ethylene has a major effect on the plant life cycle from germination onward. Ethylene biosynthesis is tightly regulated by external and internal cues. In etiolated seedlings of Arabidopsis and rice, various phytohormones affect ethylene biosynthesis through transcriptional and/or post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid (ACC), ACC synthases (ACS), and ACC oxidases (ACO). This study showed strigolactone also affected ethylene biosynthesis in dark-grown rice seedlings. Strigolactone treatment altered levels of S-ADENOSYLMETHIONINE SYNTHASES (OsSAMSs) and ACC SYNTHASES (OsACSs) transcripts, which encode enzymes involved in the initial steps of ethylene biosynthesis. The application of strigolactone reduced ethylene production, however, by decreasing transcription of OsACO genes, thus negatively affecting the final step of ethylene biosynthesis. In addition, treatment with strigolactone resulted in a phenotype in which the coleoptiles of dark-grown rice seedlings were shortened, contrary to treatment with ACC. These results reveal the tight correlation between strigolactone and ethylene biosynthesis.

三苯甲内酯通过降低 OsACO 基因的表达,减少乙烯在赤霉病水稻秧苗中的生物合成
在植物中,发育或环境胁迫会激活一系列不同的植物激素,从而触发生化和/或形态适应。气态植物激素乙烯对植物萌发后的生命周期有重要影响。乙烯的生物合成受到外部和内部因素的严格调控。在拟南芥和水稻黄化幼苗中,各种植物激素通过转录和/或转录后调控1-氨基环丙烷-1-羧酸(ACC)、ACC合成酶(ACS)和ACC氧化酶(ACO)来影响乙烯生物合成。本研究表明,独角麦内酯也影响了暗栽培水稻幼苗的乙烯合成。独角曲内酯处理改变了s -腺苷甲硫氨酸合成酶(OsSAMSs)和ACC合成酶(OsACSs)转录物的水平,这两种合成酶编码参与乙烯生物合成初始步骤的酶。然而,单脚甾体内酯的应用通过降低OsACO基因的转录来降低乙烯的产量,从而对乙烯生物合成的最后一步产生负面影响。此外,与ACC处理相反,用独角麦内酯处理会导致深色水稻幼苗的胚囊缩短。这些结果揭示了独角麦内酯与乙烯生物合成之间的密切关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信