Fabrication and in Vivo Evaluation of Hybrid Squalene-Loaded Nanofiber Scaffolds Based on Poly(ε-Caprolactone)/Polyvinyl Alcohol/Chitosan for Wound Healing Applications
Fariba Noori, Azam Bozorgi, Ahmad Reza Farmani, Ali Abbasi, Jafar Ai, Alireza Tavassoli, Abdolmajid Ghasemian, Hassan Morovvati, Hiva Alipanah, Mohammad Reza Ataollahi, Lida Ebrahimi, Seyed Amin Kouhpayeh, Arash Goodarzi
{"title":"Fabrication and in Vivo Evaluation of Hybrid Squalene-Loaded Nanofiber Scaffolds Based on Poly(ε-Caprolactone)/Polyvinyl Alcohol/Chitosan for Wound Healing Applications","authors":"Fariba Noori, Azam Bozorgi, Ahmad Reza Farmani, Ali Abbasi, Jafar Ai, Alireza Tavassoli, Abdolmajid Ghasemian, Hassan Morovvati, Hiva Alipanah, Mohammad Reza Ataollahi, Lida Ebrahimi, Seyed Amin Kouhpayeh, Arash Goodarzi","doi":"10.1007/s10924-025-03543-2","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic wounds significantly burden global healthcare systems, necessitating innovative solutions. Hybrid electrospun nanofibers are promising for enhancing wound healing and controlled drug delivery. This study focused on developing and characterizing hybrid nanofibrous scaffolds made from polycaprolactone (PCL), polyvinyl alcohol (PVA), and chitosan (Cs), infused with squalene (SQ) to improve healing in a rat model of full-thickness wounds. The scaffolds were created using coaxial electrospinning, with PCL as the shell and a PVA/Cs mixture as the SQ-loaded core. Characterization involved Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), mechanical properties, contact angle measurements, swelling, degradation, drug release, cell attachments and cytotoxicity assays. After implantation in a rat model for 14 days, histopathological assessments evaluated inflammation, re-epithelialization, and collagen deposition. The hybrid nanofibers maintained consistent morphology with smooth surfaces and no bead formation. Diameters were 219 ± 33.4 nm for the neat scaffold and 227 ± 59.7 nm, 167.3 ± 35.9 nm, and 126.7 ± 39.75 nm for SQ2%, SQ3%, and SQ4%, respectively. SQ-loaded scaffolds exhibited reduced swelling ratio, hydrophilicity, and degradation rate, alongside improved tensile strength (194% increase in SQ4% vs. control), sustained SQ release (40% over 14 days for SQ3%), as well as considerable reducing in wound sizes (90% reduction in SQ2%). The PCL-PVA/Cs/SQ2% formulation notably reduced inflammation while promoting re-epithelialization and collagen deposition. The PCL-PVA/Cs/SQ nanofiber scaffolds demonstrated superior properties that effectively modulated inflammation and promoted wound healing. They represent a promising strategy for enhancing wound repair.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2515 - 2536"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03543-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic wounds significantly burden global healthcare systems, necessitating innovative solutions. Hybrid electrospun nanofibers are promising for enhancing wound healing and controlled drug delivery. This study focused on developing and characterizing hybrid nanofibrous scaffolds made from polycaprolactone (PCL), polyvinyl alcohol (PVA), and chitosan (Cs), infused with squalene (SQ) to improve healing in a rat model of full-thickness wounds. The scaffolds were created using coaxial electrospinning, with PCL as the shell and a PVA/Cs mixture as the SQ-loaded core. Characterization involved Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), mechanical properties, contact angle measurements, swelling, degradation, drug release, cell attachments and cytotoxicity assays. After implantation in a rat model for 14 days, histopathological assessments evaluated inflammation, re-epithelialization, and collagen deposition. The hybrid nanofibers maintained consistent morphology with smooth surfaces and no bead formation. Diameters were 219 ± 33.4 nm for the neat scaffold and 227 ± 59.7 nm, 167.3 ± 35.9 nm, and 126.7 ± 39.75 nm for SQ2%, SQ3%, and SQ4%, respectively. SQ-loaded scaffolds exhibited reduced swelling ratio, hydrophilicity, and degradation rate, alongside improved tensile strength (194% increase in SQ4% vs. control), sustained SQ release (40% over 14 days for SQ3%), as well as considerable reducing in wound sizes (90% reduction in SQ2%). The PCL-PVA/Cs/SQ2% formulation notably reduced inflammation while promoting re-epithelialization and collagen deposition. The PCL-PVA/Cs/SQ nanofiber scaffolds demonstrated superior properties that effectively modulated inflammation and promoted wound healing. They represent a promising strategy for enhancing wound repair.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.