Biodegradable Shape Memory Nanocomposites Based on PCL/PPC/Graphene: As a Proposal Material for Cardiovascular Stent

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Maryam Hashemi, Ismaeil Ghasemi, Abdollah Omrani, Abbasali Rostami, Carlos J. Durán-Valle, Mohammad Qandalee
{"title":"Biodegradable Shape Memory Nanocomposites Based on PCL/PPC/Graphene: As a Proposal Material for Cardiovascular Stent","authors":"Maryam Hashemi,&nbsp;Ismaeil Ghasemi,&nbsp;Abdollah Omrani,&nbsp;Abbasali Rostami,&nbsp;Carlos J. Durán-Valle,&nbsp;Mohammad Qandalee","doi":"10.1007/s10924-025-03546-z","DOIUrl":null,"url":null,"abstract":"<div><p>The limitations of metallic stents have led to the development of absorbable polymer stents in cardiovascular applications. This study focuses on the synthesis of biodegradable shape memory nanocomposites made of polycaprolactone (PCL), poly(propylene carbonate) (PPC) and functionalized graphene nanoparticles (FGNp), designed for medical devices that exhibit shape memory effects at human body temperature. The nanocomposites were synthesized using a solvent casting method. To enhance the performance of graphene nanoparticles (GNPs), chemical modification with polyethylene glycol (PEG) was performed, which was confirmed by energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The effect of modified graphene nanoparticles on the shape memory behavior was discussed in detail and the presence of graphene showed an increase in temporary shape stabilization in the samples. In the nanocomposite with 10 wt% PCL and 0.5 phr FGNp, the shape fixation ratio (Rf) and shape recovery ratio (Rr) of about 90% were achieved with a shape memory transition temperature (Ts) close to human body temperature. This sample was successfully fabricated into a stent by a 3D bioprinter, and the fabricated stent exhibited an improved shape memory effect. Furthermore, comprehensive blood compatibility evaluations including hemolysis, cytotoxicity, and complement activation along with in vitro degradation and drug release behavior evaluations confirmed the potential of the nanocomposite PCL10/PPC90/FGNP0.5 as a promising candidate for the fabrication of biomedical stents.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2464 - 2479"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03546-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The limitations of metallic stents have led to the development of absorbable polymer stents in cardiovascular applications. This study focuses on the synthesis of biodegradable shape memory nanocomposites made of polycaprolactone (PCL), poly(propylene carbonate) (PPC) and functionalized graphene nanoparticles (FGNp), designed for medical devices that exhibit shape memory effects at human body temperature. The nanocomposites were synthesized using a solvent casting method. To enhance the performance of graphene nanoparticles (GNPs), chemical modification with polyethylene glycol (PEG) was performed, which was confirmed by energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The effect of modified graphene nanoparticles on the shape memory behavior was discussed in detail and the presence of graphene showed an increase in temporary shape stabilization in the samples. In the nanocomposite with 10 wt% PCL and 0.5 phr FGNp, the shape fixation ratio (Rf) and shape recovery ratio (Rr) of about 90% were achieved with a shape memory transition temperature (Ts) close to human body temperature. This sample was successfully fabricated into a stent by a 3D bioprinter, and the fabricated stent exhibited an improved shape memory effect. Furthermore, comprehensive blood compatibility evaluations including hemolysis, cytotoxicity, and complement activation along with in vitro degradation and drug release behavior evaluations confirmed the potential of the nanocomposite PCL10/PPC90/FGNP0.5 as a promising candidate for the fabrication of biomedical stents.

Abstract Image

基于 PCL/PPC/Graphene 的可生物降解形状记忆纳米复合材料:作为心血管支架的建议材料
金属支架的局限性导致了可吸收聚合物支架在心血管应用中的发展。本研究的重点是合成由聚己内酯(PCL)、聚碳酸丙烯酯(PPC)和功能化石墨烯纳米颗粒(FGNp)组成的可生物降解形状记忆纳米复合材料,设计用于在人体温度下表现出形状记忆效应的医疗设备。采用溶剂铸造法制备了纳米复合材料。为了提高石墨烯纳米颗粒(GNPs)的性能,对其进行了聚乙二醇(PEG)的化学改性,并通过能量色散x射线光谱(EDX)和拉曼光谱进行了证实。详细讨论了改性石墨烯纳米颗粒对形状记忆行为的影响,石墨烯的存在增加了样品的临时形状稳定性。在PCL质量分数为10 wt%、FGNp质量分数为0.5 phr的纳米复合材料中,形状固定率(Rf)和形状恢复率(Rr)达到90%左右,形状记忆转变温度(Ts)接近人体温度。该样品通过3D生物打印机成功制成支架,支架的形状记忆效果得到改善。此外,综合血液相容性评估,包括溶血、细胞毒性、补体活化以及体外降解和药物释放行为评估,证实了纳米复合材料PCL10/PPC90/FGNP0.5的潜力,是制造生物医学支架的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信